

Air System Motor, Drives – Sizing and Selection

Trinity Persful

VP Marketing, Twin City Fan, Minneapolis, MN

tpersful@tcf.com

Air System Engineering & Technology (ASET) Conference–US San Antonio, TX • Hyatt Regency San Antonio Riverwalk • March 6 - 7, 2018

Copyright MCA International • www.amca.org

Professional Development Hours (PDH) Certificates

The Air Movement and Control Association International (AMCA), has met the standards and requirements of the Registered Continuing Education Providers Program. Credit earned on completion of this program will be reported to the RCEP. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by NCEES or RCEP.

Copyright Materials

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display, and use of the educational activity without written permission of the presenter is prohibited.

© AMCA International

Learning Objectives

- Understand the role of fans in energy efficiency
- Understand reference fan calculations using AMCA 207/208
- Become familiar with part load energy calculations using AMCA 207/208

Structure

- 1. Brief review of Fan Efficiency Index (FEI)
 - $FEI = FEP_{ref}/FEP_{act}$
- 2. Reference Fan Electrical Input Power (FEP_{ref})
 - Based off of flow and pressure of operating point = max power allowed
 - Calculated transmission loss
 - Calculated motor loss
- 3. Actual Fan Electrical Input Power (FEP_{act})
 - Wire to air tests or
 - Fan power + calculations for belt losses, coupling, vfd losses, control losses, motor losses

AMCA 207 Standard

AMCA 207 – Fan System Efficiency and Fan System Input Power Calculation

- Provides a method to estimate the input power and efficiency of a fan SYSTEM
- Models commonly used components
- Scope fans covered by AMCA 210/211, AMCA 230 (circulating fans), AMCA 260 (induced flow)

AMCA 208 Standard

AMCA 208 – Calculation of the Fan Energy Index (FEI)

- Defines the FEI
- Allows a comparison basis to compare fan energy performance
- Regulatory bodies can use to define the requirements

What's a Fan?

Intro to FEI

In the most simple terms, we compare a fan selection to a reference(default) fan.

How well does the selection compare?

 $FEI = \frac{Reference \ Fan \ Electrical \ Input \ Power}{Actual \ Fan \ Electrical \ Input \ Power} = \frac{FEP_{ref,i}}{FEP_{act,i}}$

FEI = Fan Efficiency Index

$$FEP_{ref,i} = H_{i,ref}\left(\frac{1}{\eta trans, ref}\right) \left(\frac{1}{\eta motor, ref}\right) \times .7457$$

 H_i = Fan shaft power (kW, hp) η= efficiency

$$FEP_{ref,i} = \boldsymbol{H}_{i,ref}\left(\frac{1}{\eta trans,ref}\right) \left(\frac{1}{\eta motor,ref}\right) \times .7457$$

 $H_{i,ref} = \frac{(Q_i + Q_0)(P + P_0 \times \frac{\rho}{\rho_{std}})}{6,343 \times \eta_o}$

- Q_i selected fan airflow
- P_i selected fan total pressure (ducted), or static pressure (nonducted)
- P air density
- ρ_{std} standard air density
- Q₀ 0.118 m3/s (SI), or 250 cfm (IP)
- P_{0} 100 Pa (SI), or 0.40 in.wg (IP)
- η_0 66% for ducted applications and 60% for nonducted applications

$$FEP_{ref,i} = H_{i,ref}\left(\frac{1}{\eta trans, ref}\right) \left(\frac{1}{\eta motor, ref}\right) \times .7457$$

The reference fan transmission efficiency is calculated using the same equations as found in ANSI/AMCA Standard 207 for V-belt drives. The efficiency of a V-belt transmission is calculated as:

Transmission efficiency = V-belt power transmission

$$FEP_{ref,i} = H_{i,ref}\left(\frac{1}{\eta trans, ref}\right) \left(\frac{1}{\eta motor, ref}\right) \times .7457$$

- The reference fan = a motor efficiency based on the IE3, 4 pole 60 Hz motor.
- To simplify the calculation a curve fit is used through the IE3 motor efficiency requirements.
- The result is a reference motor efficiency that varies continuously based on the required motor output power.

$$FEP_{ref,i} = H_{i,ref}\left(\frac{1}{\eta trans, ref}\right) \left(\frac{1}{\eta motor, ref}\right) \times .7457$$

ηmotor, ref=

Fan Configuration	Motor Type	FEPact Determination	Example Applications	
Fan for which the motor is not yet selected	N/A	Default motor efficiency calculation	 Fans sold without motors Catalogs used for fans prior to motor selection 	
Fan with motor	Any	Wire to air measurements (211)	 Motors for which no test standards apply 	
	Polyphase induction motors within the scope of AMCA 207	AMCA 207 Calculations	 3 phase regulated motors 3 phase non-regulated (AO, XP, 2 speed, etc.) 	
	Motors for which performance can be measured in accordance with a known standard	Motor tests	 Single phase regulated motors Single phase non- regulated 3 phase fractional motors 	
	Motors where AMCA 207 does not apply	Default motor efficiencies		
Fan with motor and speed control	Any	Wire to air measurements (211)	 Motors for which no test standards apply 	
	Polyphase induction motors, reg/nonreg within AMCA207	AMCA 207 Calculations	 3 phase regulated motors 3 phase non-regulated (AO, XP, 2 speed, etc.) 	

Now that the reference fan is defined, let's define the **actual** power consumption – $FEP_{act.}$

FEP_{act} = Shaft to air + transmission loss + coupling loss + motor loss + VFD loss

- V-belt power transmission
- The efficiency of a V-belt transmission is calculated as:

Synchronous belt power transmission

• The efficiency of a synchronous belt transmission is calculated as:

$$H_i \le 1.34 \ hp, \eta_B = 0.94$$

 $1.34 \ hp < H_i \le 6.7 \ hp, \eta_B = 0.00746 \ H_i + 0.93$

 $H_i > 6.7 \ hp, \eta_B = 0.98$

Flexible coupling power transmission

• The efficiency of a flexible shaft coupling is:

η_B = 0.98

No power transmission

• If the motor shaft is rigidly connected to the fan impeller, the

 $\eta_B = 1$

The motor and VFD efficiencies are combined into a single value.

Steps to determine motor/vfd combined efficiency:

- 1. Determine the motor output power (H_m)
- 2. Calculate motor load ratio (L_m)
- 3. Determine the motor efficiency (η_m)
- 4. Determine the control (VFD) load ratio (L_c)
- 5. Determine the motor and VFD efficiency (η_{mc})
- 6. Determine the motor input power (W_c)

The motor and VFD efficiencies are combined into a single value.

Steps to determine motor/vfd combined efficiency:

1. Determine motor output power

$$H_m = \frac{H_i}{\eta_B}$$

where H_i is the fan input power and η_B is the transmission efficiency calculated from earlier.

The motor and VFD efficiencies are combined into a single value.

Steps to determine motor/vfd combined efficiency:

1. Determine motor output power

- 2. Determine the motor load ratio
- H_m = motor output power
- H_{mo} =nameplate output power

The motor and VFD efficiencies are combined into a single value.

Steps to determine motor/vfd combined efficiency:

- 1. Determine the motor output power
- 2. Calculate motor load ratio
- 3. Determine the motor efficiency
- η_m is the Nominal motor efficiency η_R is the Nominal regulated efficiency L_m is the motor load ratio

$$\eta_m = \eta_R \left(\frac{aL_m}{b+L_m} + cL_m^2 \right)$$

Motor Dowor/Stondard	ODP			TEFC				
Fower/Standard Kilowatt Equivalent	2 POLE	4 POLE	6 POLE	8 POLE	2 POLE	4 POLE	6 POLE	8 POLE
1/.75	77.0	85.5	82.5	75.5	77.0	85.5	82.5	72.0
1.5/1.1	84.0	86.5	86.5	77.0	84.0	86.5	87.5	75.5
2/1.5	85.5	86.5	87.5	86.5	85.5	86.5	88.5	81.5
3/2.2	85.5	89.5	88.5	87.5	86.5	89.5	89.5	82.5
5/3.7	86.5	89.5	89.5	88.5	88.5	89.5	89.5	84.0
7.5/5.5	88.5	91.0	90.2	89.5	89.5	91.7	91.0	84.0
10/7.5	89.5	91.7	91.7	90.2	90.2	91.7	91.0	87.5
15/11	90.2	93.0	91.7	90.2	91.0	92.4	91.7	87.5
20/15	91.0	93.0	92.4	91.0	91.0	93.0	91.7	88.5
25/18.5	91.7	93.6	93.0	91.0	91.7	93.6	93.0	88.5
30/22	91.7	94.1	93.6	91.7	91.7	93.6	93.0	90.2
40/30	92.4	94.1	94.1	91.7	92.4	94.1	94.1	90.2
50/37	93.0	94.5	94.1	92.4	93.0	94.5	94.1	91.0
60/45	93.6	95.0	94.5	93.0	93.6	95.0	94.5	91.0
75/55	93.6	95.0	94.5	94.1	93.6	95.4	94.5	92.4
100/75	93.6	95.4	95.0	94.1	94.1	95.4	95.0	92.4
125/90	94.1	95.4	95.0	94.1	95.0	95.4	95.0	93.0
150/110	94.1	95.8	95.4	94.1	95.0	95.8	95.8	93.0
200/150	95.0	95.8	95.4	94.1	95.4	96.2	95.8	93.6
250/186	95.0	95.8	95.4	95.0	95.8	96.2	95.8	94.1
300/224	95.4	95.8			95.8	96.2		

Table A1. EPCA Nominal Motor Efficiency (60 Hz motors)

March 6

27

			renormance constants (Del, np rated motors)					
2 POLI		DLE	4 POLE		6 & 8 POLE			
		а	b	а	b	а	b	
	1	1.13460	0.08674	1.12541	0.09132	1.16873	0.11466	
	1.5	1.12932	0.08114	1.12067	0.08492	1.15895	0.10606	
	2	1.12405	0.07555	1.11592	0.07851	1.14917	0.09747	
	3	1.11350	0.06436	1.10643	0.06571	1.12962	0.08027	
	5	1.09241	0.04197	1.08745	0.04009	1.09051	0.04588	
	7.5	1.08883	0.03990	1.08340	0.03745	1.08579	0.04217	
	10	1.08526	0.03783	1.07936	0.03481	1.08107	0.03846	
	15	1.07811	0.03368	1.07127	0.02953	1.07163	0.03104	
	20	1.07096	0.02953	1.06318	0.02425	1.06218	0.02362	
	25	1.06949	0.02923	1.06033	0.02291	1.05966	0.02257	
	30	1.06802	0.02892	1.05749	0.02157	1.05713	0.02152	
	40	1.06508	0.02831	1.05180	0.01889	1.05208	0.01942	
	50	1.06214	0.02769	1.04612	0.01621	1.04703	0.01732	
	60	1.05946	0.02585	1.04436	0.01556	1.04553	0.01691	
	75	1.05544	0.02309	1.04172	0.01459	1.04328	0.01631	
	100	1.04874	0.01849	1.03732	0.01298	1.03954	0.01530	
	125	1.04713	0.01813	1.03731	0.01332	1.03948	0.01463	
	150	1.04553	0.01778	1.03729	0.01365	1.03942	0.01396	
	200	1.04231	0.01707	1.03726	0.01432	1.03931	0.01262	
	250	1.04231	0.01707	1.03726	0.01432	1.03931	0.01262	
	300	1.04231	0.01707	1.03726	0.01432	1.03931	0.01262	
	350	1.04231	0.01707	1.03726	0.01432	1.03931	0.01262	

Table D1. Polyphase Induction Motor Performance Constants (DOL, hp rated motors)

March 6-7, 2018

The motor and VFD efficiencies are combined into a single value.

Steps to determine motor/vfd combined efficiency:

- 1. Determine the motor output power
- 2. Calculate motor load ratio
- 3. Determine the motor efficience
- 4. Determine the control (VFD) load ratio

$$L_c = \frac{H_m}{\eta_m H_{co}}$$

where H_{co} is the output capacity of the VFD.

The motor and VFD efficiencies are combined into a single value.

Steps to determine motor/vfd combined efficiency:

- 1. Determine the motor output power

- $\eta_{mc} = \eta_m \left(\frac{dL_c}{e+L} + fL_c \right)$ 4. Determine the control (VFD) load

HP	d	е	f
1	0.98030	0.04000	-0.01310
1.5	0.97995	0.03855	-0.01180
2	0.97960	0.03710	-0.01050
3	0.97890	0.03420	-0.00790
5	0.97750	0.02840	-0.00270
7.5	0.97810	0.02530	-0.00040
10	0.97870	0.02220	0.00190
15	0.98185	0.01985	0.00070
20	0.98500	0.01750	-0.00050
25	0.98620	0.01650	-0.00320
30	0.98740	0.01550	-0.00590
40	0.98765	0.01695	-0.00380
50	0.98790	0.01840	-0.00170
60	0.97190	0.01450	0.01180
75	0.99190	0.01790	-0.00130
100	0.98240	0.01260	0.00140
125	0.98293	0.01190	-0.00010
150	0.98345	0.01120	-0.00160
200	0.98450	0.00980	-0.00460

C1. VFD Performance Constants (hp capacity)

System integration - (FEP_{act})

The fan **system input power in kW for combined motor and VFD** operation is calculated by:

1. Determine the motor output power

- 2. Calculate motor load ratio
- 3. Determine the motor efficient
- 4. Determine the control (VFD)
- 5. Determine the motor and VFD ef

6. Determine the motor input power

$$W_c = \frac{.746H_i}{\eta_{mc}\eta_B}$$

Where:

 η_{mc} = Combined motor and VFD efficiency $\eta \square B$ = transmission efficiency

System integration - (FEP_{act})

Overall fan **system power input** and efficiency are determined by combining results for the fan system components.

The fan system **input power in kW for DOL** motor operation is calculated by:

$$W_c = \frac{.746H_i}{\eta_m \eta_B}$$

Where:

 η_m = motor efficiency $\eta \square B$ = transmission efficiency

FEI Range for Centrifugal with Speed Control

FEI Range for Adjustable Pitch Axial

A housed centrifugal fan is selected to deliver 5.94 m3/s (12,000 cfm) at a fan total pressure of 1250 Pa (5 in. wg). The input power to the fan, *Hi*, is 15.8 kW (11.8 hp) and fan speed is 1500 rpm. The fan is driven through a V-belt transmission with a 15 hp, four-pole ODP premium efficiency motor regulated under EISA 2007.

1. Calculate the transmission efficiency

 $\eta_B = 0.96 \left(\frac{H_i}{H_i + 2.2}\right)^{0.05} = 0.96 \left(\frac{11.8}{11.8 + 2.2}\right)^{0.05} = 95.2\%$ 37 March 6-7, 2018 AMCA ASET-US Conference, San Antonio, TX

2. Calculate the motor output power

$$H_m = \frac{H_i}{\eta_B} = \frac{11.8}{0.952} = 12.4 \text{ hp (9.3 kW)}$$

AMCA ASET-US Conference, San Antonio, TX

3. Calculate the motor load ratio

4. Calculate the motor efficiency, η_m . Obtain the motor nominal efficiency, η_R , from Table A1 and the motor performance constants, *a* and *b*, from Table D1. The constant *c* is calculated from *a* and *b*. $c = 1 - \frac{a}{b+1}$

$$\eta_m = \eta_R \left(\frac{aL_m}{b + L_m} + cL_m^2 \right) = 0.93 \left(\frac{1.07127 \cdot 0.827}{0.02953 + 0.827} + (-0.0405)(0.827)^2 \right) = 93.6\%$$

The motor input power is then calculated as

$$W_c = \frac{0.746 H_i}{\eta_m \eta_B} = \frac{0.746 \cdot 11.8}{0.936 \cdot 0.952} = 9.9 \text{ kW}$$

March 6-7, 2018

4. Calculate the motor/VFD efficiency. Obtain the VFD constants *d*, *e*, and *f* from Table C1.

$$c = 1 - \frac{a}{b+1}$$

$$\eta_m = \eta_R \left(\frac{aL_m}{b + L_m} + cL_m^2 \right) = 0.93 \left(\frac{1.07127 \cdot 0.827}{0.02953 + 0.827} + (-0.0405)(0.827)^2 \right) = 93.6\%$$

The motor input power is then calculated as

$$W_c = \frac{0.746 H_i}{\eta_m \eta_B} = \frac{0.746 \cdot 11.8}{0.936 \cdot 0.952} = 9.9 \text{ kW}$$

March 6-7, 2018

AMCA ASET-US Conference, San Antonio, TX

Status

- AMCA Standard 208 is published
- AMCA 208 is integrated into ISO 12759
- Default losses for drive components based on AMCA 207
- FEI would be calculated using rating data taken during AMCA 210 or ISO 5801 tests
- U.S. DOE regulation stalled, but would be based on FEI
- California stated regulation picking up where DOE left off
- ASHRAE 90.1 replacing FEG with FEI
- U.S. efficiency rebates will be based on FEI ©2016 Air Movement and Control Association. All Rights

Resources

- AMCA International: <u>www.amca.org</u>
- AMCA Standards Bookstore: <u>www.amca.org/store</u>

Questions?

