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ABSTRACT
The purpose of this white paper is to provide a derivation of 
the fan laws and to briefly discuss their application.

Fan engineering is macroscopic. It is based on the assumption that a large number of particles are distributed 
continuously throughout space. Therefore, the working matter is not viewed as separate particles of oxygen, 
nitrogen, water, etc., but as a continuous fluid. From this standpoint, it is possible to discuss the state of the fluid 
at a particular point in space.

The “state” of anything always is described quantitatively. According to System Internationale (SI), there are seven 
basic or primary physical quantities or dimensions. They are:

• Mass (M)

• Length (L)

• Time (T)

• Thermodynamic temperature

• Intensity of electric current

• Luminous intensity

• Amount of substance
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All other quantities are secondary and can be derived from the seven primary dimensions. Some secondary 
physical quantities and their dimensions that are important in fluid dynamics are:

• Surface, L2 • Power, ML2/T3

• Volume, L3 • Moment of inertia, ML2

• Density, M/L3 • Angular velocity, 1/T

• Velocity, L/T • Angular acceleration, 1/T2

• Volumetric flow rate, L3/T • Angular momentum, ML2/T

• Acceleration, L/T2 • Torque, ML2/T2

• Momentum, ML/T • Modulus of elasticity, M/LT2

• Force, ML/T2 • Surface tension, M/T2

• Pressure, M/LT2 • Viscosity (absolute), M/LT

• Energy, ML/T2 • Viscosity (kinematic), L2/T

• Pressure head, L2/T2

Experience shows that eight of these physical quantities are significant in describing the operating state of a fan 
or, more generally, the operating state of a turbomachine. The quantities are:

• Q, volumetric rate of flow through the fan

• h, head developed by the fan

• H, power

• N, fan speed (angular velocity of the rotor)

• D, rotor diameter (or any characteristic dimension)

• ρ, density

• μ, viscosity

• Y, elasticity

For every operating state of a fan there exists a quantitative combination of these variables to describe that state. 
The combinations of these variables are not random. A relationship that has yet to be determined exists between 
all of these variables. For example, we may say the flow rate, Q, is a function of the other variables, or:

 Q = f(h, H, N, D, ρ, μ, Y )
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To determine this relationship experimentally, one would have to vary each of the quantities while holding the 
others steady and measure Q to determine the effect of the variable on Q. This process would be very long and 
unmanageable.

Fortunately, there exists a procedure in fluid mechanics called dimensional analysis that formulates a relationship 
between the variables and allows prediction of the operating state. The procedure basically consists of combining 
the variables into groups called PI groups. The groups are unrelated to 3.1416 and have no dimensions.

Buckingham’s PI theorem states there can be only a certain number of PI groups. That number is equal to n 
minus k, where n is equal to the number of variables describing the function and k is equal to the number of 
primary dimensions used by the original variables. In our case, the number of variables describing the function 
is eight, and all of the variables can be described by the dimensions M, L, and T. Hence, k is equal to three. 
Therefore, there are five PI groups.

Calculation of the PI groups for a turbomachine is as follows:

First, select three variables that, when combined, will not form a dimensionless group. Let’s first select N, D, and 
ρ. These three variables taken together contain at least one of each of the primary dimensions found in the eight 
original variables and, when combined, are not dimensionless.

 (N)(D)(ρ) = (1/T)(L)(M/L3) = M/TL2

Next, raise each of these variables to an as-yet-unknown power and combine them with one of the five remaining 
variables raised to the first power.

 PI1 = (N)a(D)b(ρ)c(Q)1 = (1/T)a(L)b(M/L3)c(L3/T)1 = M0L0T0 = 1

Simultaneously solve the exponents to create a dimensionless product:

    M:  c = 0  c = 0

    L:  b – 3c + 3 = 0 b = -3

    T:  -a – 1 = 0 a = -1

Therefore:

 PI1 = Q/ND3 flow coefficient

Repeating:

 PI2 = (N)a(D)b(ρ)c(h)1 = (1/T)a(L)b(M/L3)c(L2/T2)1 = M0L0T0

    M:  c = 0  c = 0

    L:  b – 3c + 2 = 0 b = -2

    T:  -a – 2 = 0 a = -2

 PI2 = h/N2D2

Head is defined as energy per unit mass. A quantity more easily measured is pressure. By manipulating  
dimensions, it can be shown that head actually is pressure divided by density.

 h = L2/T2 = ML2/T2 × 1/M = M/LT2 × L3/M = P/ρ 
       (energy/mass)   (pressure/density)
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Therefore, a more convenient form of PI2 is:

 PI2 = P/ρN2D2 pressure coefficient

 PI3 = (N)a(D)b(ρ)c(H)1 = (1/T)a(L)b(M/L3)c(ML2/T3)1 = M0L0T0

    M:  c + 1 = 0  c = -1

    L:  b – 3c + 2 = 0 b = -5

    T:  -a – 3 = 0 a = -3

Solving to get:

 PI3 = H⁄N3 D5 ρ   power coefficient

 PI4 = (N)a(D)b(ρ)c(μ)1 = (1/T)a(L)b(M/L3)c(M/LT)1 = M0L0T0

    M:  c + 1 = 0  c = -1

    L:  b – 3c – 1 = 0 b = -2

    T:  -a – 1 = 0 a = -1

Solving to get:

 PI4 = μ/ND2ρ  Add π to get fan Reynolds number

 PI5 = (N)a(D)b(ρ)c(Y )1 = (1/T)a(L)b(M/L3)c(M/LT2)1 = M0L0T0

    M:  c + 1 = 0  c = -1

    L:  b – 3c – 1 = 0 b = -2

    T:  -a – 2 = 0 a = -2

And finally:

 PI5 = Y/N2D2ρ

Because PI numbers are dimensionless, they can be combined to form new PIs (which also are dimensionless), 
such as specific speed:

 PI6 = (PI1)
.5/(PI2)

.75 = (NQ.5ρ.75)/(P.75)

… and specific diameter:

 PI7 = (PI2)
.25/(PI1)

.5 = (DP.25)/(ρ.25Q.5)

Specific speed and specific diameter are important because, for every operating condition for a given fan design, 
there is only one specific speed and one specific diameter. That means there is only one specific speed and one 
specific diameter for a given fan design’s peak efficiency. This concept is useful when the operating condition is 
known but the fan design has not yet been chosen because, after the specific speed or specific diameter has 
been calculated, the fan design with the highest efficiency at that specific speed or diameter is obvious.
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The first three PI groups lead directly to three important fan laws:

 Q2 = Q1(N2/N1)
1(D2/D1)

3

 P2 = P1(ρ2/ρ1)
1(N2/N1)

2(D2/D1)
2

 H2 = H1(ρ2/ρ1)
1(N2/N1)

3(D2/D1)
5

The fan laws provide a direct relationship between operating states of a fan. It is this relationship that allows us 
to predict fan performance from only one tested fan curve (instead of many) and one model, provided three 
conditions of similarity exist between model and prototype. The conditions are:

• Geometric similarity—Fluid flow between model and prototype must have geometrically similar 
boundaries as well as angular equality.

• Kinematic similarity—Streamlines of the fluid are similar between model and prototype.

• Dynamic similarity—The force distribution between flows must be parallel and have the same 
ratio at all points in the flow.

The fan laws give us a relatively simple method of predicting fan performance by relating the performance of a 
model to that of a prototype without complex mathematical equations and with a reasonably limited amount of 
testing.

For example, what would happen if the capacity of a fan in an air system (P = kQ2) were 24,000 cfm and we 
increased its speed from 1180 rpm to 1750 rpm? Assume a 24½-in. impeller diameter.

 Q2 = 24,000 cfm (1750/1180)1(24½/24½)3 = 35,593 cfm

Easy. While the derivation of the fan laws may seem abstract, the final product is simple and provides a powerful 
tool in fan application.
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