

Minimizing System Effect

Mark Bublitz

Vice President - Engineering

mbublitz@nyb.com

David Maletich

Director - Marketing

dmaletich@nyb.com

The New York Blower Company

Air System Engineering & Technology (ASET) Conference-US

San Antonio, TX • Hyatt Regency San Antonio Riverwalk • March 6 - 7, 2018

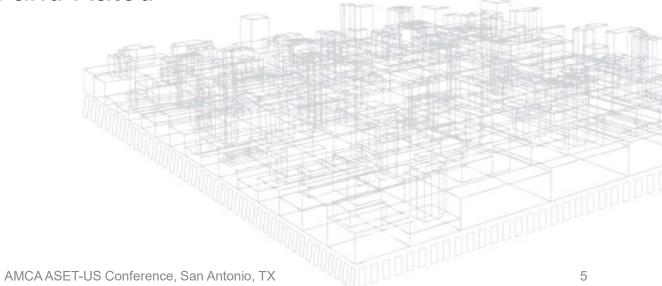
nternational • www amca ord

Professional Development Hours (PDH) Certificates

The Air Movement and Control Association International (AMCA), has met the standards and requirements of the Registered Continuing Education Providers Program. Credit earned on completion of this program will be reported to the RCEP. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by NCEES or RCEP.

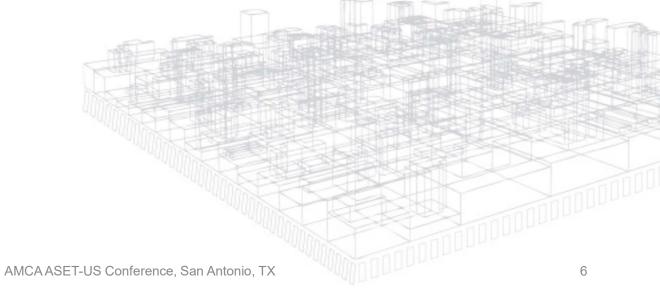
Copyright Materials

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display, and use of the educational activity without written permission of the presenter is prohibited.

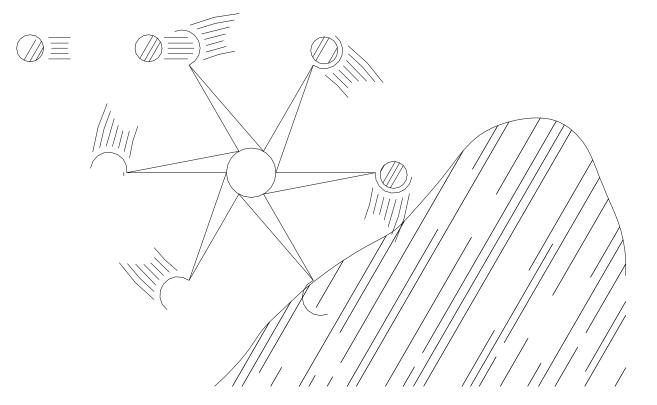

Learning Objectives

- Review the primary engineering principles involved in fan operation, rating, and performance.
- Understand conditions beyond the fan that impact fan performance.

Fan Fundamentals


Subjects

- Fan Laws
- How Fans are Tested and Rated
- Various Fan Types
- System Effects



Key Terms

- CFM
- SP (Ps)
- VP (Pv)
- RPM
- BHP
- kW

March 6-7 2018 www.aset-us.com

- CFM = 10,000
- SP = 1"
- RPM = **1,000**
- BHP = 10

- CFM =
- SP =
- RPM = 2,000
- BHP =

- CFM = 10,000
- SP = 1"
- RPM = **1,000**
- BHP = 10

- CFM = 20,000
- SP =
- RPM = **2,000**
- BHP =

$$\frac{SP_{new}}{SP_{old}} = \left(\frac{RPM_{new}}{RPM_{old}}\right)^{2}$$

- CFM = 10,000
- SP = 1"
- RPM = **1,000**
- BHP = 10

- CFM = 20,000
- SP =
- RPM = **2,000**
- BHP =

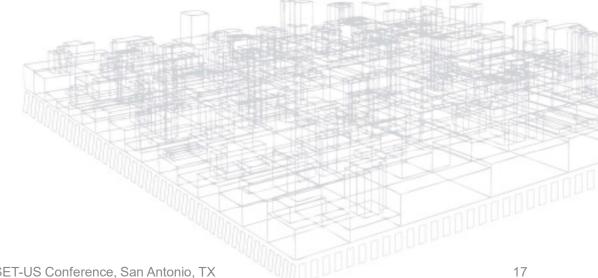
- CFM = 10,000
- SP = 1"
- RPM = **1,000**
- BHP = 10

- CFM = 20,000
- SP = 4"
- RPM = 2,000
- BHP =

$$\frac{BHP_{new}}{BHP_{old}} = \left(\frac{RPM_{new}}{RPM_{old}}\right)^3$$

- CFM = 10,000
- SP = 1"
- RPM = **1,000**
- BHP = **10**

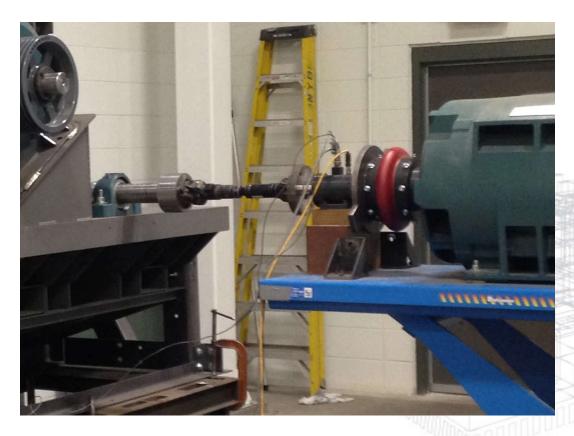
- CFM = 20,000
- SP = 4"
- RPM = 2,000
- BHP =


• CFM =
$$10,000$$

•
$$SP = 1$$

• CFM =
$$20,000$$

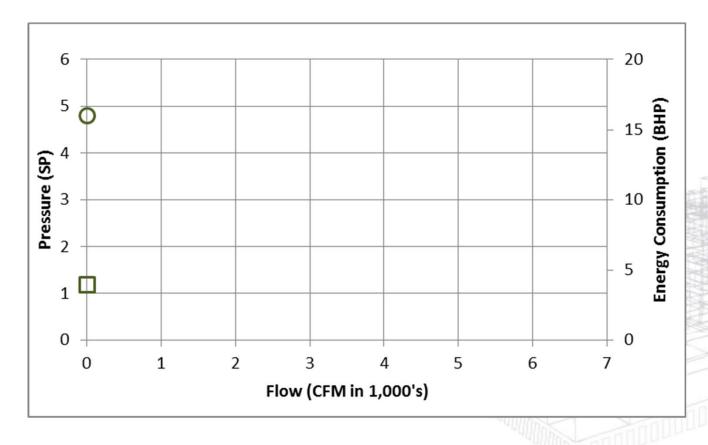
•
$$RPM = 2,000$$

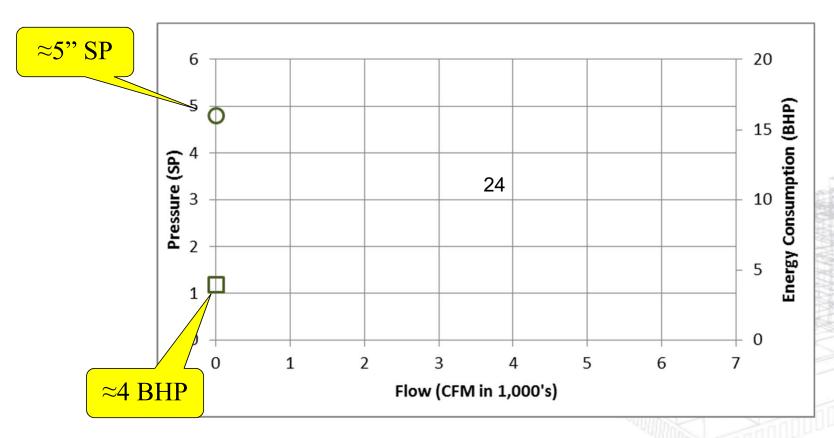


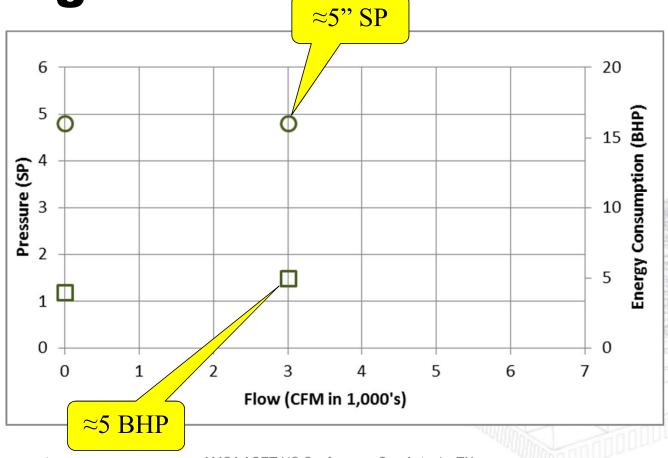
March 6-7 2018 www.aset-us.com

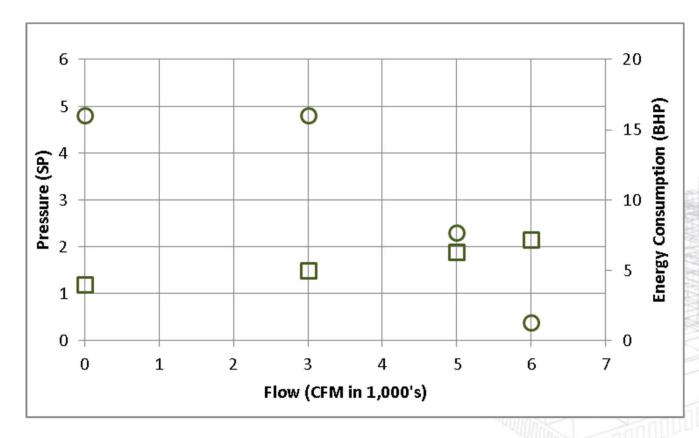
AMCA ASET-US Conference, San Antonio, TX

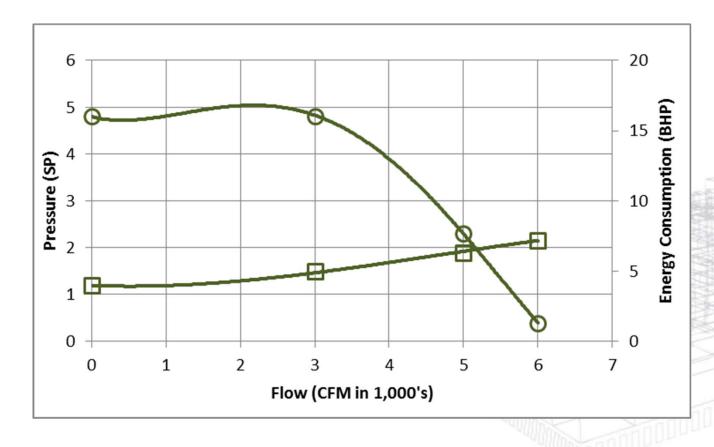
AMCA ASET-US Conference, San Antonio, TX


March 6-7 2018 www.aset-us.com

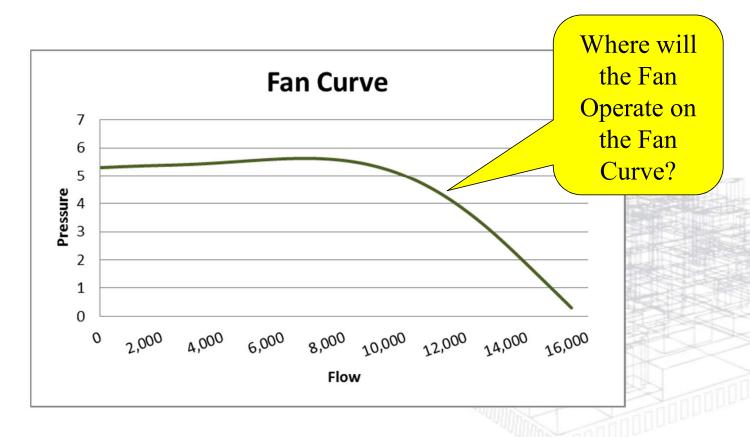

AMCA ASET-US Conference, San Antonio, TX

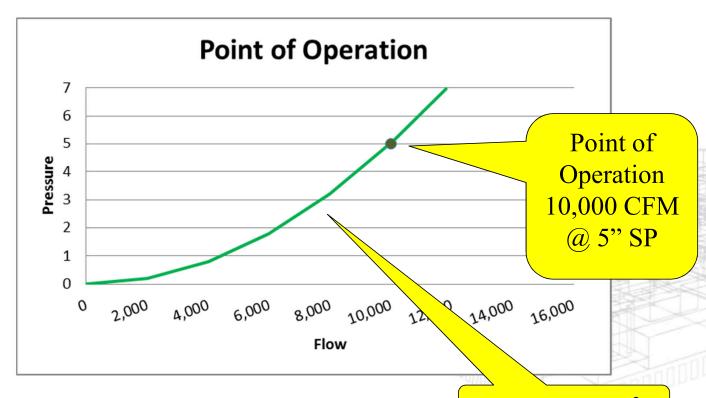

AMCA ASET-US Conference, San Antonio, TX





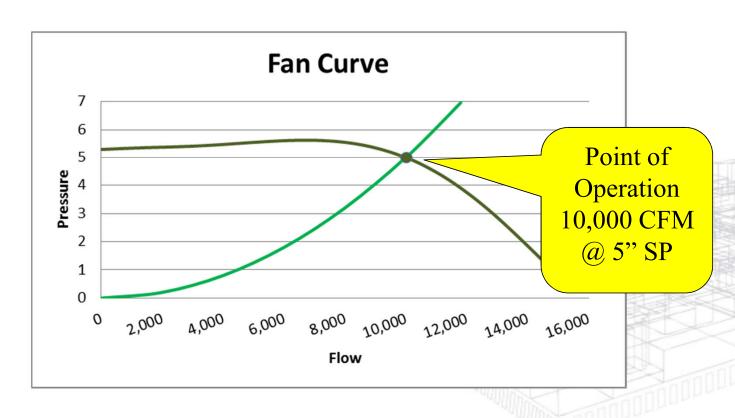
Fan Performance Curve

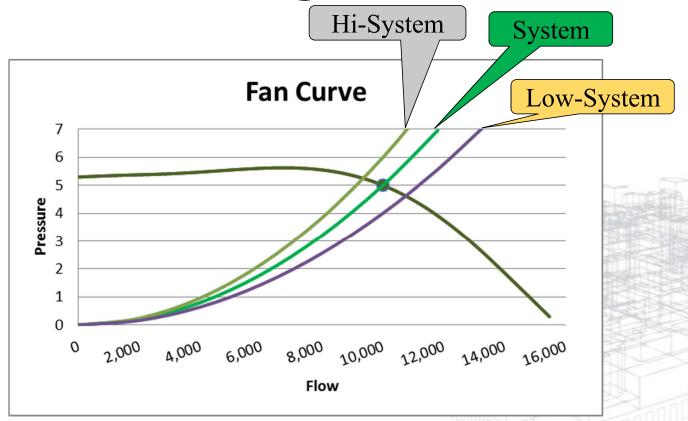

Catalog Performance Tables


MODEL 405				WITH EVASE				Wheel diameter: 40.3" Wheel circumference: 10.5'						Outlet area: 10.2 sq. ft. Maximum BHP = $245 \left(\frac{\text{RPM}}{1000}\right)^2$						AF-30=2035 RPM AF-40=2470 RPM AF-50=2640 RPM			
CFM	ov	18"SP		22"SP		26"SP		28"SP		30°SP		34"SP		3 <i>8</i> "SP		4.2"SP		46"SP		48"SP		50°SP	
		RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР
24000 26800 29200	2346 2608 2867	1540 1574 1615	76.9 85.9 96.6	1891 1708 1735	96 106 115	1828 1836 1858	116 124 136	1896 1902 1918	125 135 146	1960 1966 1976	135 146 157	2086 2090	167 179	2208 2210	189 204	2320	227	2482	253	2478	264		
31800 34400 37000	3112 3366 3620	1668 1721 1785	107 119 132	1775 1827 1880	126 140 154	1886 1928 1977	148 162 177	1947 1980 2023	160 173 188	2000 2006 2071	170 186 200	2111 2133 2173	194 208 227	2221 2241 2262	218 235 251	2320 2339 2360	242 260 278	2429 2468 2462	268 286 304	2478 2492 2501	281 301 318	2530 2539 2551	296 314 334
39600 42200 44800 47400	3875 4129 4394 4638	1850 1920 1991 2068	147 164 181 202	1989 2004 2071 2144	170 188 206 228	2084 2089 2150 2218	195 212 232 254	2078 2131 2192 2259	207 225 246 268	2124 2176 2235 2298	220 238 260 281	2212 2260 2312 2373	284 285 286 311	2302 2341 2396 2449	271 291 315 340	2388 2429 2469 2519	297 319 342 367	2481 2510 2562 2594	326 347 372 397	2526 2558 2598 2633	340 362 388 413	2567 2598 2629	354 378 402
MODEL 445				WITH EVASE				Wheel diameter: Wheel circumference				e: 11.7	.	Мах	ВНР	: 12.5 sq . ft 3HP = 40.3				AF-40=2		1850 RPM 2230 RPM 2400 RPM	
CFM	ov	18 RPM	'SP BHP	RPM	"SP BHP	26' RPM	"SP BHP	28 RPM	'SP BHP	30°	"SP BHP	RPM	'SP BHP	3.8°	"SP BHP	A2 RPM	"SP BHP	A6°	"SP BHP	48°	*SP BHP	SO RPM	'SP BHP
30000 33200 36400	2398 2654 2910	1409 1436 1466	97.6 108 118	1537 1554 1584	120 131 144	1661 1671 1692	144 156 170	1722 1730 1752	157 170 188	#80 #88 #86	169 183 199	1886 1897 1909	198.0 210 227	1996	236	2099	265	2194 2199	294 315	2249 2249	311 332	2288	323 347
39600 42800 46000	3165 3421 3677	1509 1556 1604	131 146 159	1616 1666 1897	158 172 187	1722 1752 1790	186 201 217	1773 1806 1840	200 217 234	1228 1381 1384	215 231 249	1924 1961 1978	24 26 26 28	2019 2039 2066	273 298 315	2116 2135 2150	305 328 348	2209 2221 2235	337 360 382	2254 2262 2280	353 376 401	2301 2306 2320	371 393 417
49200 52400 55800 58800	3933 4189 4444 4700	1661 1718 1780 1844	175 198 213 235	1748 1801 1856 1915	206 224 244 267	1834 1884 1933 1989	236 257 278 301	1878 1923 1971 2026	252 273 294 319	1924 1964 2010 2064	270 289 312 338	2009 2090 2090 2137	303 326 348 374	2092 2124 2166 2206	336 359 385 410	2177 2206 2243 2280	372 395 423 460	2257 2291 2315 2354	406 436 469 490	2306 2325 2358 2390	428 452 482 510	2343 2361 2391	446 470 499
	MODEL 495				WITH EVASE				Wheel diameter: Wheel circumference						Outlet area: 1: Maximu m BHF			t. 5 (<u>RP)</u>	A),	AF-40=2		1675 RPM 2025 RPM 2170 RPM	
CFM	ov	18°SP		22"SP		26"SP		28"SP		30"SP		34"SP		3.8"SP		42"SP		46"SP		48"SP		50°SP	
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	BHP
36000 40000 44000	2361 2623 2885	1267 1296 1336	116 130 146	1380 1404 1480	142 158 174	1500 1507 1526	172 187 205	1556 1568 1572	187 202 220	1610 1611 1621	202 218 236	1711 1716	250 270	1810 1811	286 306	1903	342	1990	378				
48000 52000 56000	3148 3410 3672	1383 1435 1493	164 184 207	1671 1516 1696	194 216 289	1558 1596 1640	225 248 272	1601 1637 1679	241 268 291	1646 1675 1716	258 281 308	1734 1758 1791	293 3 fr 3 44	1822 1839 1867	329 354 383	1908 1922 1940	365 393 420	1990 2000 2018	403 481 462	2082 2088 2064	423 451 482	2076 2078 2091	444 471 503
6000 6400 6800 7200	3934 4197 4469 4721	1552 1615 1682 1748	232 260 292 325	1621 1680 1741 1807	286 226 327 364	1698 1744 1806 1863	302 331 366 401	1728 1778 1834 1892	320 350 385 422	1760 1813 1885 1923	336 370 404 443	1831 1876 1925 1978	375 407 444 482	1900 1941 1989 2037	413 447 487 525	1969 2007 2049 2099	462 489 527 572	2013 2072 2112 2166	496 611 615	2076 2104 2142	515 561 593	2110 2137	536 573

Performance shown is for AF Fans with evase discharges, with outlet ducts, and with or without inlet ducts. BHP does not include belt losses

Product Selection Software





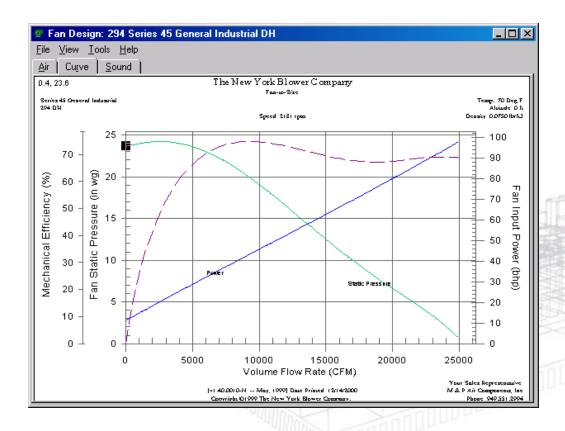
AMCA ASET-US Conference, San Antonio, TX

 $\Delta SP = \Delta CFM^2$

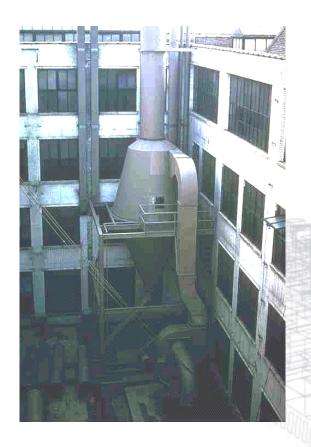
Density and Airstream

- A fan's operation is impacted by the density and the component make-up of the gas stream moving through the fan.
- The gas stream density is affected by temperature and altitude.
- The primary concern for the operating temperature of a fan is a mechanical issue.

Fan Types

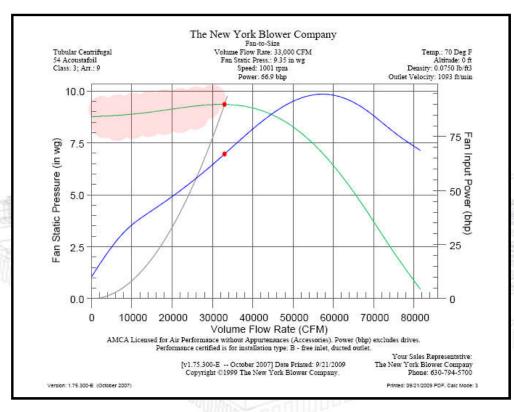

March 6-7 2018 www.aset-us.com

• Different fan (impeller) types have differing characteristic (performance) curves.



Radial

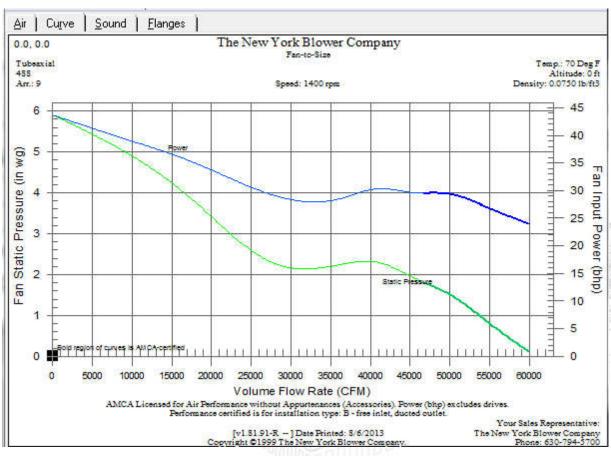
Radial



AMCA ASET-US Conference, San Antonio, TX

Backward Inclined

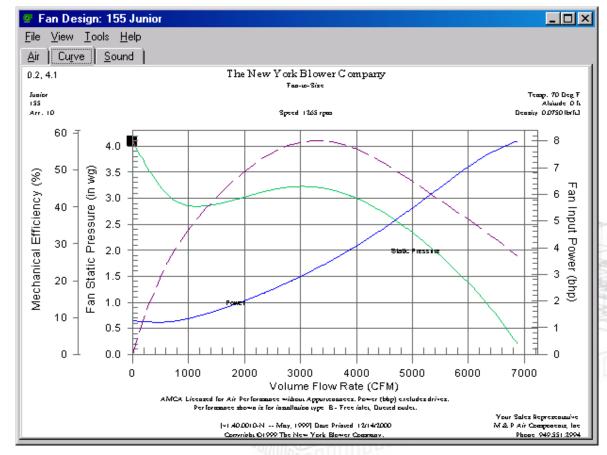
Backward Inclined



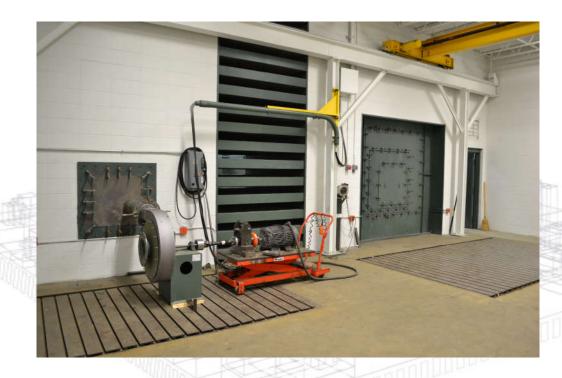
AMCA ASET-US Conference, San Antonio, TX

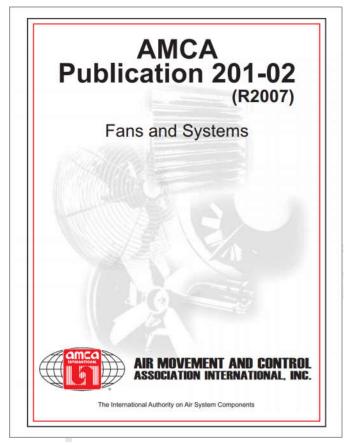
Axial


Axial

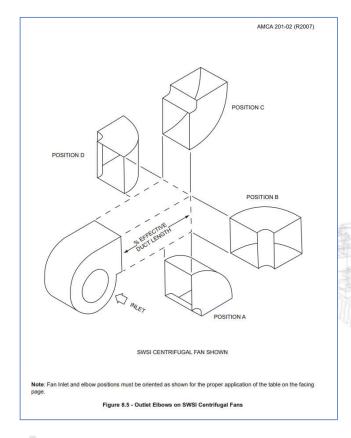


Forward Curve

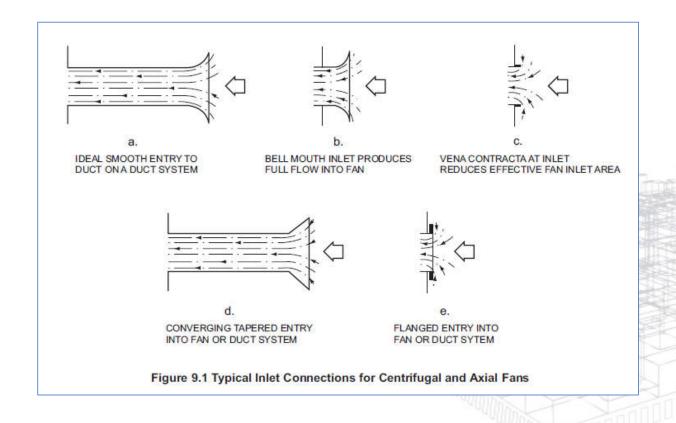

March 6-7 2018 www.aset-us.com

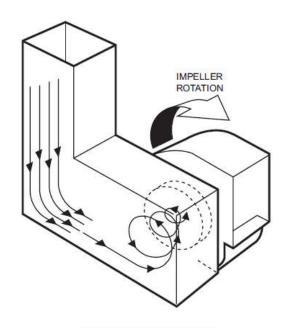

AMCA ASET-US Conference, San Antonio, TX

Forward Curve



- Laboratory Environment
- Specified (AMCA)
 Configurations
- Inlet and outlet conditions specified...why?
 ...to minimize system effect





Blast Area Outlet Area	Outlet Elbow Position	No Outlet Duct	12% Effective Duct	25% Effective Duct	50% Effective Duct	100% Effective Duct
0.4	A B C D	N M-N L-M L-M	O N M	P-Q O-P N N	S R-S Q	ND System Effect Fieldor
0.5	A B C D	0-P N-O M-N M-N	P-Q Q-P N N	R Q O-P O-P	T S-T R-S R-S	
0.6	A B C D	Q P N-O N-O	Q-R Q O	S R Q	U T S	
0.7	A B C D	R-S Q-R P	S R-S Q	T S-T R-S R-S	V U-V T T	
0.8	A B C D	S R-S Q-R Q-R	S-T S R R	T-U T S S	W V U-V	
0.9	A B C D	T S R R	T-U S-T S	U-V T-U S-T S-T	W W V	
1.0	A B C D	T S-T R-S R-S	T-U T S	U-V U T	W V V	
	DETERM	NINE SEF BY	USING FIG	URES 7.1 AN	ID 8.1	
		en, apply the n below		e multiplier		
		ELBOW PO	OSITION A = OSITION B = OSITION C = OSITION D =	ΔP = 1.00 ΔP × 1.25 ΔP × 1.00		
	Figure 8	.5 - Outlet El	bows on SV	VSI Centrifu	gal Fans	

COUNTER-ROTATING SWIRL

Figure 9.7 - Example of a Forced Inlet Vortex

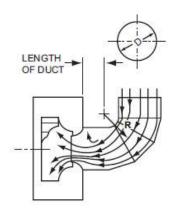


Figure 9.3A - Non-Uniform Airflow Into a Fan Inlet Induced by a 90°, 3-Piece Section Elbow-No Turning Vanes

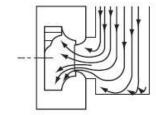


Figure 9.3B - Non-Uniform Airflow Induced Into Fan Inlet by a Rectangular Inlet Duct

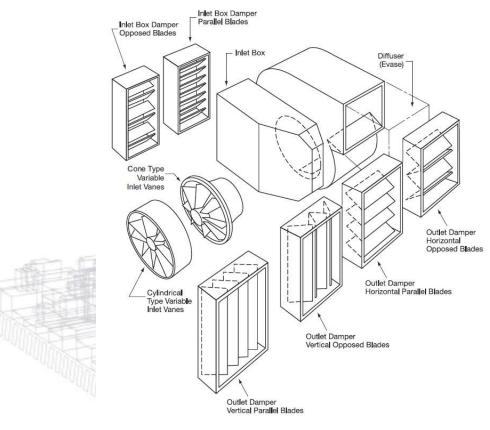
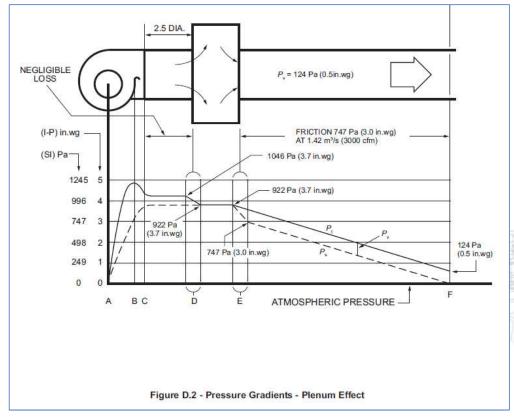
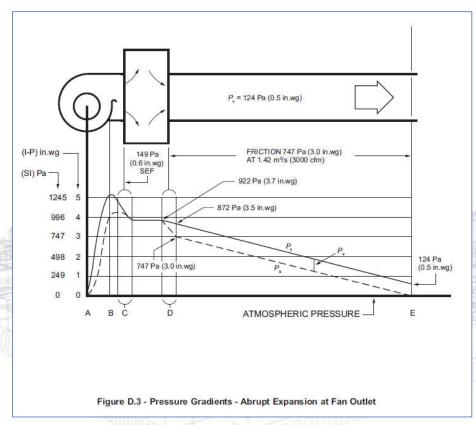
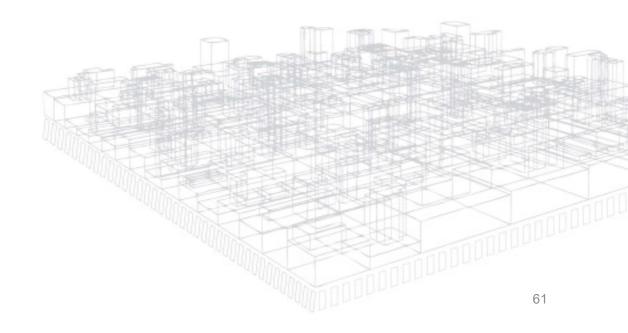




Figure 10.1 - Common Terminology for Centrifugal Fan Appurtenances

AMCA ASET-US Conference, San Antonio, TX

March 6-7 2018 www.aset-us.com

AMCA ASET-US Conference, San Antonio, TX



System Effect Demonstration

Questions?

David Maletich

Director - Marketing
The New York Blower Company

dmaletich@nyb.com

Mark Bublitz

Vice President - Engineering
The New York Blower Company
mbublitz@nyb.com