

The Impact of Duct Fitting Selection

AMCA insiteTM Webinar Series | AMCA International | www.amca.org

Lisa Cherney

Education Manager, AMCA International *Webinar Moderator*

- Joined AMCA in February 2019
- Responsible for development of AMCA's education programs; staff liaison for the Education & Training Subcommittee
- Projects include webinars, online education modules, presentations at trade shows, AMCA Speakers Network and other duties as assigned.

Introductions & Guidelines

- Participation Guidelines:
 - Audience will be muted during the webinar.
 - Questions can be submitted anytime via the GoToWebinar platform and will be addressed at the end of the presentation.
 - Reminder: This webinar is being recorded!
 - To earn PDH credit for today, please stay clicked onto the webinar for the entire hour.
 - A post-webinar evaluation will be emailed to everyone one hour after today's broadcast, and it <u>must</u> be completed to qualify for today's PDH credit.

Q & A

To submit questions:

- From the attendee panel on the side of the screen, select the "Questions" drop down option.
 - Type your question in the box and click "Send".
 - Questions will be answered at the end of the program.

AMCA International has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

Attendance for the entire presentation AND a completed evaluation are required for PDH credit to be issued.

DISCLAIMER

The information contained in this webinar is provided by AMCA International as an educational service and is not intended to serve as professional engineering and/or manufacturing advice. The views and/or opinions expressed in this educational activity are those of the speaker(s) and do not necessarily represent the views of AMCA International. In making this educational activity available to its members and others, AMCA International is not endorsing, sponsoring or recommending a particular company, product or application. Under no circumstances, including negligence, shall AMCA International be liable for any damages arising out of a party's reliance upon or use of the content contained in this webinar.

COPYRIGHT MATERIALS

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display and use of the educational activity without written permission of the presenter is prohibited.

© AMCA International 2021

Pat Brooks

Senior Project Manager, SMACNA

- Over 35 years experience in HVAC ductwork design and manufacturing
- Bachelor's & master's degrees in mechanical engineering, and masters' degree in business
- Member of ASHRAE and SPIDA technical committees on duct design; recently named ASHRAE Distinguished Lecturer

The Impact of Duct Fitting Selection Purpose and Learning Objectives

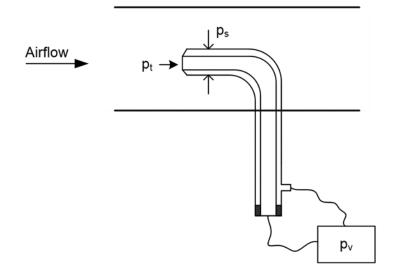
The purpose of this presentation to help duct system designers learn how to calculate friction and dynamic losses as well as understand how the velocity and type of fitting impacts the design.

At the end of this presentation participants will be able to:

- 1. Explain how friction loss is calculated and how velocity affects the friction loss.
- 2. Explain fitting loss coefficients and how fitting losses are calculated.
- 3. Explain how the selection of a fitting affects the design leg of the duct system.
- 4. Describe how the size of ductwork or fitting selection can affect the system balance.

SMACNA Manual

HVAC SYSTEMS DUCT DESIGN


FOURTH EDITION – DECEMBER 2006

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION, INC. 4201 Lafayette Center Drive Chantilly, VA 20151-1209 www.smacna.org

Pressure

$\mathbf{p}_{t} = \mathbf{p}_{s} + \mathbf{p}_{v}$

Pitot-static tube

Pressure - Changes in Pressure

 $\Delta p_t = \Delta p_s + \Delta p_v$

Derived from the Bernoulli Equation:

$$p_{s1} + \frac{\rho_1 V_1^2}{2g_c} + \frac{g}{g_c} \rho_1 z_1 = p_{s2} + \frac{\rho_2 V_2^2}{2g_c} + \frac{g}{g_c} \rho_2 z_2 + \Delta p_{t,1-2}$$

Pressure - Velocity Pressure (p_v)

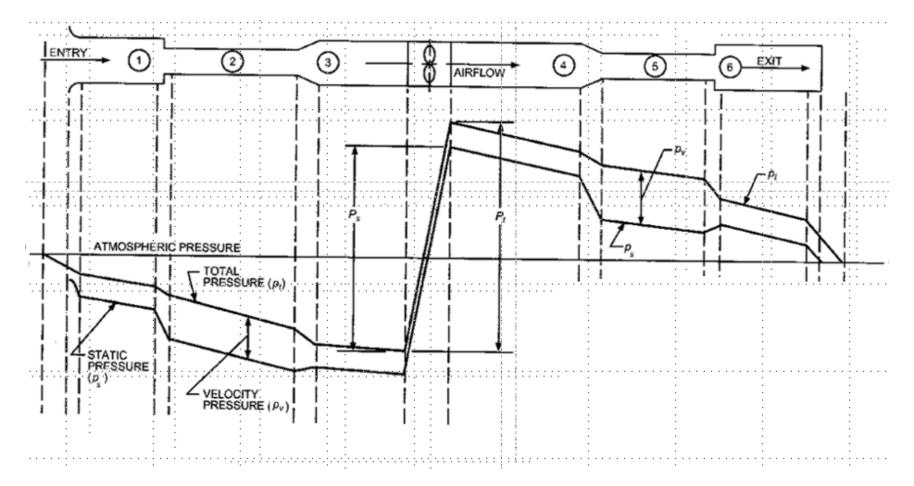
$$\boldsymbol{p}_{v} = \boldsymbol{\rho} \left(\frac{V}{1097}\right)^{2}$$

Where:

 p_v = velocity pressure, in. of water

- V = velocity, ft/min
- ρ = density, Ib_m/ft³

Pressure - Velocity Pressure (p_v)


$$\boldsymbol{p}_{v} = \boldsymbol{\rho} \left(\frac{V}{1097}\right)^{2}$$

Where:

- $p_v =$ velocity pressure, in. of water
- V = velocity, ft/min
- ρ = density, Ib_m/ft³

$$p_v = \left(\frac{V}{4005}\right)^2$$
 for standard air $\rho = 0.075 \text{ lb}_m/\text{ft}^3$

Pressure Changes During Flow in Ducts - Graphically

Types

- Friction Losses
- Dynamic Losses

Pressure Losses

Darcy-Weisbach Equation

$\Delta p_t = \left(\frac{f L}{D_h} p_v\right) + \sum_v (C) * p_v$

Where:

f = friction factor L = Length, ft D_h = hydraulic diameter, ft

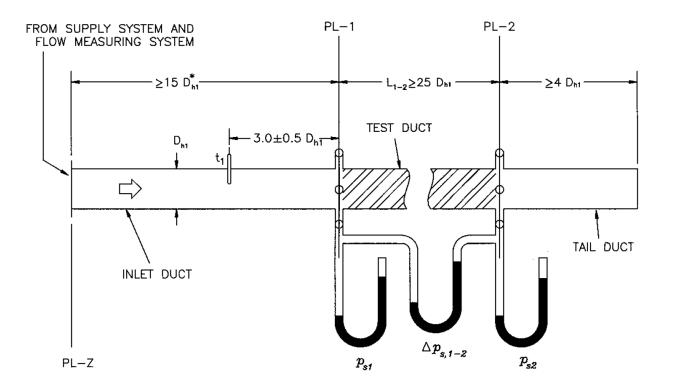

```
Friction – Darcy Equation
```

The left-hand side of the Darcy-Weisbach Equation is the Darcy Equation:

$$\Delta p_f = \left(\frac{f \ L}{D_h} p_v\right)$$

Friction – Colebrook Equation

$$\frac{1}{\sqrt{f}} = -2 \log\left(\frac{\varepsilon}{3.7 Dh} + \frac{2.51}{Re\sqrt{f}}\right)$$


The Colebrook equation was developed to calculate the friction factor, f; requires you to also know the Reynolds Number, Re, and the absolute roughness, ε (*ft*), which is determined experimentally.

Pressure Losses - Friction

Friction Losses are a function of the length, hydraulic diameter, the roughness of the material and the velocity pressure. Higher friction losses are caused by:

- <u>Rougher</u> Material (including joints)
- Longer Lengths
- <u>Larger</u> Velocity Pressures
- <u>Smaller</u> Diameters

Friction – How Friction and Roughness Factors are determined

$$\Delta p_{f,1-2} = \frac{\Delta p_{s,1-2}}{L_{1-2}}.$$

Pressure Losses Friction – Colebrook Equation

Duct Material	Roughness	Absolute Roughness ε ₁		
	Category	ft	mm	
Uncoated carbon steel, clean (Moody 1944) (0.00015 ft) (0.05 mm)	Smooth	0.0001	0.03	
PVC plastic pipe (Swim 1982) (0.0003 to 0.00015 ft) (0.01 to 0.05 mm)				
Aluminum (Hutchinson 1953) (0.00015 to 0.0002 ft) (0.04 to 0.06 mm)				
Galvanized steel, longitudinal seams, 4 ft (1200 mm) joints (Griggs 1987) (0.00016 to 0.00032 ft) (0.05 to 0.1 mm)	Medium Smooth	0.0003	0.09	
Galvanized steel, spiral seam with 1, 2, and 3ribs, 12 ft (3600 mm) joints (Jones 1979, Griggs 1987) (0.00018 to 0.00038 ft) (0.05 to 0.12 mm)	(New Duct Friction Loss Chart)			
Hot-dipped galvanized steel, longitudinal seams, 2.5ft (760 mm) joints (Wright 1945) (0.0005 ft) (0.15 mm)	Old Average	0.0005	0.15	
Fibrous glass duct, rigid	Medium			
Fibrous glass duct liner, air side with facing material (Swim 1978) (0.005 ft) (1.5 mm)	Rough	0.003	0.9	
Fibrous glass duct liner, air side spray coated (Swim 1978) (0.015 ft) (4.5 mm)	Rough	0.01	3.0	
Flexible duct, metallic, (0.004 to 0.007 ft (1.2 to 2.1 mm) when fully extended)				
Flexible duct, all types of fabric and wire (0.0035 to 0.015 ft (1.0 to 4.6 mm) when fully extended)				
Concrete (Moody 1944) (0.001 to 0.01 ft) (0.3 to 3.0 mm)				

HVAC SYSTEMS DUCT Table A-1, pg A.4.

Table A-1 Duct Material Roughness Factors

Friction – Comparison of Different Velocities and Materials

Example: Calculate the Friction Loss in 100 ft of rectangular duct 24" x 32" at 1000 fpm, 2000 fpm, 3000 fpm and 4000 fpm for standard galvanized metal ($\epsilon = 0.0003$ ft) and lined duct ($\epsilon = 0.003$ ft)

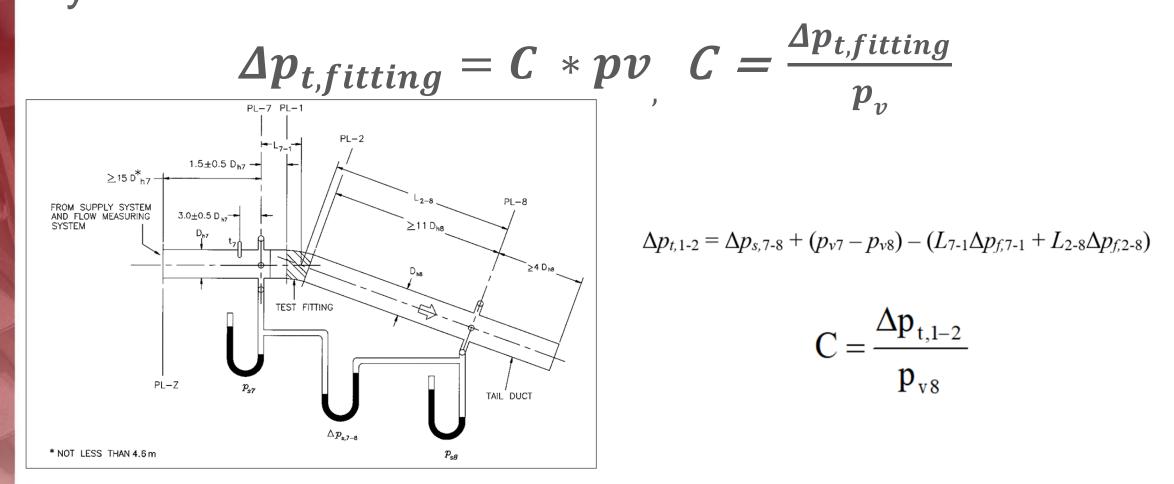
Pressure Losses – Friction Comparison of Different Velocities and Materials

Solution							
L=	100	ft					
Area =	5.33	ft ²					
P =	9.33	ft					
D _h =	2.29	ft					
ρ = 0.075 ll	b _m /ft³	Standard Cond	ditions				
			Standard Galvanized (ε = 0.0003 ft)		Lined Duct, Corrugated Duc (ε = 0.003 ft)		
	Velocity Pressure			∆p _f	Friction		Δp _f Friction
Velocity	p _v (inch	Q = AV Flow	Friction	Lo	ss (inch	Friction	Loss (inch
(fpm)	water)	Rate (cfm)	Factor, f	v	vater)	Factor, <i>f</i>	water)
1000	0.06	5333	0.0163		0.04	0.0220	0.06
2000	0.25	10667	0.0148		0.16	0.0215	0.23
3000	0.56	16000	0.0142		0.35	0.0213	0.52
4000	0.99	21333	0.0139		0.60	0.0212	0.92

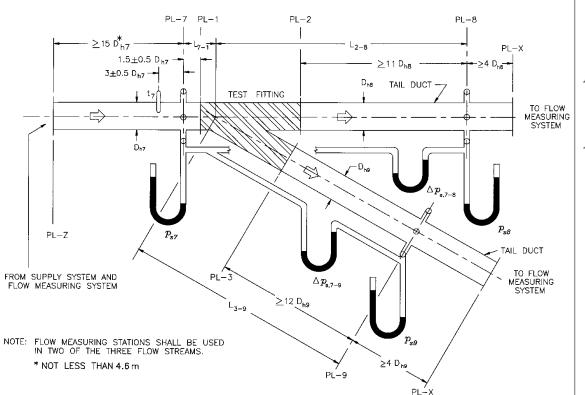
Dynamic

The right-hand side of the Darcy-Weisbach Equation is the Weisbach Equation

 $\Delta p_{t,fittings} = \sum_{v} (C) * p_{v}$



Dynamic - How Loss Coefficients are Determined


$$\Delta p_{t,fitting} = C * pv$$

$$C = \frac{\Delta p_{t,fitting}}{p_v}$$

Dynamic – How Loss Coefficients are Determined

Dynamic - How Loss Coefficients are Determined – *Diverging Fittings*

 $L_{7\text{-}1,}\,L_{2\text{-}8 \text{ and }}L_{3\text{-}9}$ are measured to the centerline of the fitting

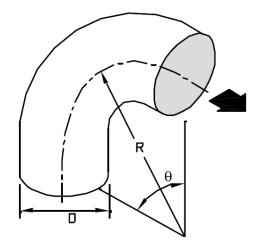
Main:
$$\Delta p_{t,1-2} = \Delta p_{s,7-8} + (p_{v7} - p_{v8}) - (L_{7-1}\Delta p_{f,7-1} + L_{2-8}\Delta p_{f,2-8})$$

Branch: $\Delta p_{t,1-3} = \Delta p_{s,7-9} + (p_{v7} - p_{v9}) - (L_{7-1}\Delta p_{f,7-1} + L_{3-9}\Delta p_{f,3-9})$

$$C_s = \frac{\Delta p_{t,1-2}}{p_{v8}}$$

$$C_b = \frac{\Delta p_{t,1-3}}{p_{v9}}$$

- Loss coefficients are often published in table form or equations. See tables A-7 to A-15 in the SMACNA HVAC SYSTEMS DUCT DESIGN manual.
- If a branched fitting, check to see what referenced velocity pressure is used.
- If non-standard conditions are encountered, use the density correction factors from Figure A-4.

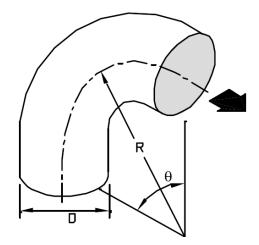

Example: 10" Dia, 90° Smooth Radius Elbow, R/D = 1.5. Airflow is 1000 acfm. Elevation is 5000 ft.

Solution: $A_d = (\pi d^2 / 4)/144 = (\pi x 10^2/4)/144 = 0.545 ft^2$

$$V = \underline{Q} = 1000/0.545 = 1834 \, \text{fpm}$$
$$A_d$$
$$p_v = \left(\frac{V}{4005}\right)^2 = \left(\frac{1834}{4005}\right)^2 = 0.21 \, \text{in wg}$$

Example: 10" Dia, 90° Smooth Radius Elbow, R/D = 1.5. Airflow is 1000 acfm. Elevation is 5000 ft.

A. ELBOW, SMOOTH RADIUS (DIE STAMPED), ROUND

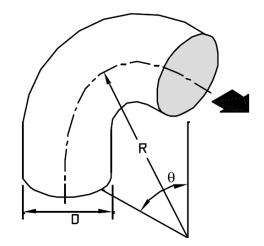

Coefficients for 90° Elbows (See Note 1)										
R/D	0.5	0.75	1.0	1.5	2.0	2.5				
С	0.71	0.33	0.22	0.15	0.13	0.12				

Note 1: For angles other than 90° multiply by the following factors:											
θ	0°	20°	30°	45°	60°	75°	90°	110°	130°	150°	180°
K	0	0.31	0.45	0.60	0.78	0.90	1.00	1.13	1.20	1.28	1.40

Table A-7A, page A.15

Example: 10" Dia, 90° Smooth Radius Elbow, R/D = 1.5. Airflow is 1000 acfm. Elevation is 5000 ft.

A. ELBOW, SMOOTH RADIUS (DIE STAMPED), ROUND

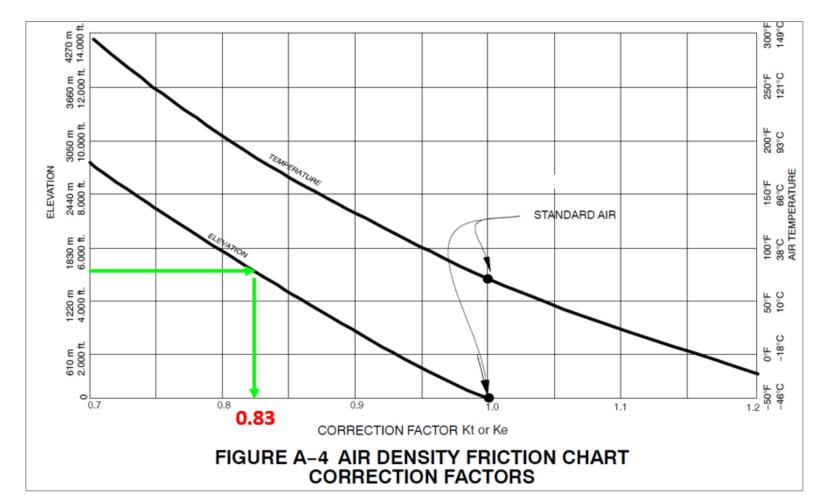

Coefficients for 90° Elbows (See Note 1)										
R/D	0.5	0.75	1.0	1.5	2.0	2.5				
С	0.71	0.33	0.22	0.15	0.13	0.12				

Note 1: For angles other than 90° multiply by the following factors:											
θ	0°	20°	30°	45°	60°	75°	90°	110°	130°	150°	180°
K	0	0.31	0.45	0.60	0.78	0.90	1.00	1.13	1.20	1.28	1.40

Table A-7A, page A.15

Example: 10" Dia, 90° Smooth Radius Elbow, R/D = 1.5. Airflow is 1000 acfm. Elevation is 5000 ft.

A. ELBOW, SMOOTH RADIUS (DIE STAMPED), ROUND



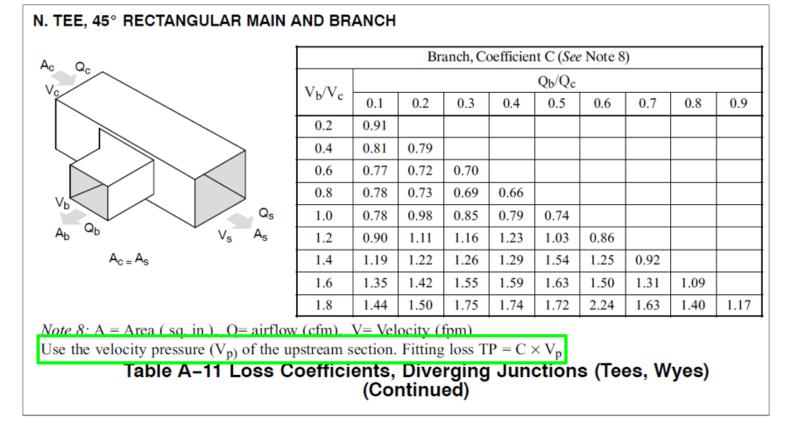
Coefficients for 90° Elbows (See Note 1)										
R/D	0.5	0.75	1.0	1.5	2.0	2.5				
С	0.71	0.33	0.22	0.15	0.13	0.12				

Note 1: For angles other than 90° multiply by the following factors:											
θ	0°	20°	30°	45°	60°	75°	90°	110°	130°	150°	180°
K	0	0.31	0.45	0.60	0.78	0.90	1.00	1.13	1.20	1.28	1.40

Table A-7A, page A.15

Pressure Losses Dynamic - Loss Coefficient Correction Factors

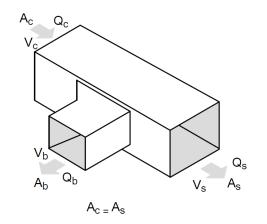
Pressure Losses Dynamic - Pressure Loss for the Elbow


 $\Delta p_t = C x p_v x Ke$

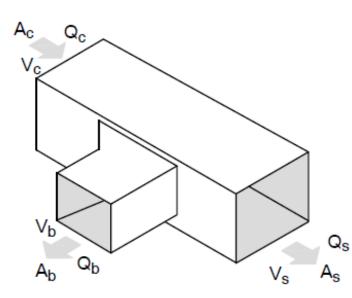
$\Delta p_{t} = 0.15 \times 0.21 \times 0.83 = 0.03$ inch of water

Example: Tee, 45°, 10" x 10" Rectangular Main and 7" x 7" Rectangular Branch. Airflow is 1000 cfm in Main and 500 cfm in Branch.

Pressure Losses Dynamic - Loss Coefficient Tables


Example: Tee, 45°, 10" x 10" Rectangular Main and 7" x 7" Rectangular Branch. Airflow is 1000 cfm in Main and 500 cfm in Branch.

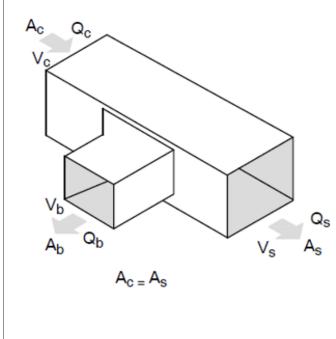
Pressure Losses Dynamic - Loss Coefficient Tables


Example: Tee, 45°, 10" x 10" Rectangular Main and 7" x 7" Rectangular Branch. Airflow is 1000 cfm in Main and 500 cfm in Branch.

Area Main, $A_c = (10 \times 10) / 144 = 0.69 \text{ ft}^2$ Area Branch, $A_b = (7 \times 7) / 144 = 0.34 \text{ ft}^2$ Velocity, $V_c = 1000/0.69 = 1440 \text{ fpm}$ Velocity, $V_b = 500/0.34 = 1469 \text{ fpm}$ Velocity pressure $p_{vc} = (1440/4005)^2 = 0.13 \text{ in } H_20$ Velocity pressure $p_{vb} = (1469/4005)^2 = 0.13 \text{ in } H_20$ Velocity Ratio, $V_b / V_c = 1469/1440 = 1.02$ Flow Rate Ratio, $Q_b / Q_c = 500/1000 = 0.50$

Pressure Losses Dynamic - Loss Coefficient Tables

N. TEE, 45° RECTANGULAR MAIN AND BRANCH


 $A_{c} = A_{s}$

	Branch, Coefficient C (See Note 8)													
V. /V					Q_b/Q_c									
V _b /V _c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9					
0.2	0.91													
0.4	0.81	0.79												
0.6	0.77	0.72	0.70											
0.8	0.78	0.73	0.69	0.66										
1.0	0.78	0.98	0.85	0.79	0.74									
1.2	0.90	1.11	1.16	1.23	1.03	0.86								
1.4	1.19	1.22	1.26	1.29	1.54	1.25	0.92							
1.6	1.35	1.42	1.55	1.59	1.63	1.50	1.31	1.09						
1.8	1.44	1.50	1.75	1.74	1.72	2.24	1.63	1.40	1.17					

Pressure Losses Dynamic - Loss Coefficient Tables

N. TEE, 45° RECTANGULAR MAIN AND BRANCH

Page A.33

		Br	anch, Co	oefficier	nt C (See	Note 8)		
V. /V					Q_b/Q_c				
V _b /V _c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.2	0.91								
0.4	0.81	0.79							
0.6	0.77	0.72	0.70						
0.8	0.78	0.73	0.69	0.66					
1.0	0.78	0.98	0.85	0.79	0.74				
1.2	0.90	1.11	1.16	1.23	1.03	0.86			
1.4	1.19	1.22	1.26	1.29	1.54	1.25	0.92		
1.6	1.35	1.42	1.55	1.59	1.63	1.50	1.31	1.09	
1.8	1.44	1.50	1.75	1.74	1.72	2.24	1.63	1.40	1.17
	Δ	Ap _{t,c-}	_b = ().74	x 0	.13 :	=(0.1	10) i	nch

Table A-11N, $C_{b} = 0.74$

Pressure Losses – Designed Fitting Won't Fit How to Determine What Will Work

Consider:

- □ Is the Fitting in a Design Leg?
- □ What is the Velocity Pressure?
- □ What are the Options For Replacement?
- □ Which of the Fitting Options is Most Economical?
- □ Will the Fitting Change the Design Leg, i.e.:
 - Will it Cause the Fan Operating Pressure to Increase?
 - Will the Change Affect the System Balance?

Pressure Losses

The Design Leg – Critical Path

Critical paths are the duct sections from a fan outlet to the terminal device with the <u>highest total pressure drop for supply systems</u> or from the entrance to the fan inlet with the <u>highest total pressure</u> <u>drop for return or exhaust systems</u>.

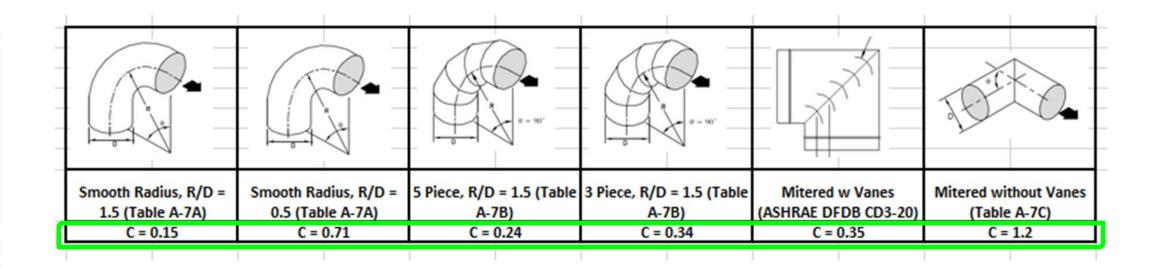
Will a Fitting Change Affect the Design Leg or Balance of the System?

Pressure Losses – Critical Path

Example Equal Fri	iction Desigr	1		SD5-12, 49	5° Entry Branch						
		_10	ft			100	ft				
						2					
			3			6					
(ft							
											1000 cfm
			1000 cfm								1000 0
For p _f /100 = 0.10	inch water										
Section 1					Section 2			Section 3			
Q1 =	2000	cfm			Q2 =	1000	cfm	Q3 =	1000	cfm	
D1 =	18	inch			D2 =	14	inch	D3 =	14	inch	
V1 =	1132	fpm			V2 =	935	fpm	V3 =	935	fpm	
p _v 1 =	0.08	inch wa	ter		p _v 2 =	0.05	inch water	p _v 3 =	0.05	inch water	-
p _f 1 =	0.09	inch wa	ter /100 ft		p _f 2 =	0.09	inch water /100 f	t p _f 3 =	0.09	inch water	/100 ft
Δp _{D1} =	0.01	inch wa	iter		p _D 2 =	0.09	inch water	p _D 3 =	0.00	inch water	
					Δp _{t1-2,fitting}	0.01	inch water	Δp _{t1-3,fitting}	0.03	inch water	
					Outlet Loss	0.05	inch water	Outlet Loss	0.05	inch water	
Path 1 -2 ∆p =	0.16	inch wa	iter								
Path 1 -3 ∆p =	0.09	inch wa	ter		Δp _{t,section 2}	0.15	inch water	Δpt, section 3	0.08	inch water	
Total Pressure =	0.16	inch wa	ter	For Path 1	- 2						
Excess Pressure	0.07	inch wa	ter	For Path 1	- 3						

Pressure Losses – Critical Path

Example Equal Friction Design		SD5-12, 4	5° Entry Bra	nch					
1	0 ft 🦯				100	ft			
					2				
	3								
	5	ft							
									1000 cfm
	1000 cfm								


0.16	inch water	
0.09	inch water	
0.16	inch water	For Path 1 - 2
0.07	inch water	For Path 1 - 3
	0.09	0.16 inch water 0.09 inch water 0.16 inch water 0.07 inch water

Pressure Losses – Critical Path

ample Equal Friction	n Design	Fitting Table A.	90° Wye (Tee)		
	10 ft		100 ft		
			2		
		5 ft			
	10	00 cfm			1000 cfm
	10				
Section 3					
Q3 =	1000 cfm				
D3 =	14 inch				
V3 =	935 fpm				
p _v 3 =	0.05 inch	water	Path 1 -2 Δp =	0.16 inch water	Did not Change!!
p _f 3 =	0.09 inch	water /100 ft	Path 1 -3 Δp =	0.15 inch water	Increased from 0.09 in wg
p _D 3 =	0.00 inch	water			
$\Delta p_{t1-3,fitting}$	0.09 inch	water	Total Pressure =	0 <mark>1</mark> 6 inch water	For Path 1 - 2
Outlet Loss	0.05 inch	water	Excess Pressure	0.01 inch water	For Path 1 - 3
$\Delta pt_{, section 3}$	0.14 inch	water			

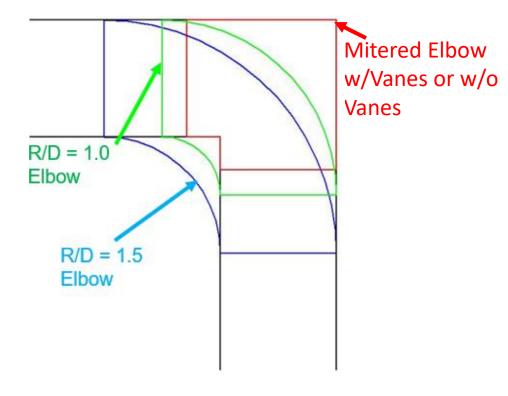
Pressure Losses

Fitting Efficiency

Pressure Losses Fitting Efficiency – Round Elbows

Comparison of Round Elbow Losses Loss Coefficients from SMACNA HVAC Systems Duct Design Appendix A															
	Compariso		12 inch					uct Design	Appendix A						
	D =	12	inch		Image: Constraint of the second se										
	Area =	0.79	ft ²												
	ρ = 0.075 I	b _m /ft ³	Standard (Conditions											
H															
				(A		(A					00°			a total	
					dius, R/D = le A-7A)		dius, R/D = le A-7A)	5 Piece, R/D A-7	-	3 Piece, R/D A-7	-	5 (Table Mitered w Van (ASHRAE DFDB C		Mitered wit (Table	
	Velocity	Velocity Pressure p _v (inch	Q = AV Flow Rate	Loss Coefficient	Δp _t (inch	Loss Coefficient	Δp _t (inch	Loss Coefficient	Δp _t (inch	Loss Coefficient	Δp _t (inch	Loss Coefficient	Δp _t (inch	Loss Coefficient	Δp _t (inch
	(fpm) 1000	water) 0.06	(cfm) 785	0.15	water) 0.01	0.71	water) 0.04	0.24	water) 0.01	0.34	water)	0.45	water) 0.03	12	water)
ļ										•	0.02			1.2	0.07
	2000	0.25	15/1		0.04	0.71	0.18		0.06		0.09		0.11	1.2	0.30
	3000	0.56				0.71	0.40		0.13		0.19		0.25	1.2	0.67
	4000	0.99	3142	0.15	0.15	0.71	0.70	0.24	0.24	0.34	0.34	0.45	0.45	1.2	1.19
				Be	est			Bet	ter			Go	od		

Pressure Losses Fitting Efficiency – Round Elbows


0	ompariso	n of Round	Elbow Loss	ses	Loss Coeffic	cients from S	SMACNA HVA	AC Systems D	uct Design	Appendix A					
0) =	12	inch												
	rea =	0.79	ft ²												
P	= 0.075 I	b _m /ft ⁻	Standard C	Conditions											
									Ø = 90°.		00°			a total	
					dius, R/D = le A-7A)		dius, R/D = Ie A-7A)	5 Piece, R/D A-7		3 Piece, R/D A-7		Mitered (ASHRAE DF		Mitered wit (Table	hout Vanes A-7C)
		Velocity Pressure	Q = AV Flow	Loss		Loss		Loss		Loss		Loss		Loss	
	Velocity	p _v (inch	Rate	Coefficient	Δp _t (inch	Coefficient	Δp _t (inch	Coefficient	Δp _t (inch	Coefficient	Δp _t (inch	Coefficient	Δp _t (inch	Coefficient	Δp _t (inch
	(fpm)	water)	(cfm)	С	water)	С	water)	С	water)	С	water)	С	water)	С	water)
Γ	1000	0.06	785	0.15	0.01	0.71	0.04	0.24	0.01	0.34	0.02	0.45	0.03	1.2	0.07
	2000	0.25	1571	0.15	0.04	0.71	0.18	0.24	0.06	0.34	0.09	0.45	0.11	1.2	0.30
	3000			0.15	0.08	0.71	0.40	0.24	0.13	0.34	0.19	0.45	0.25	1.2	0.67
Г	4000						0.70	0.24	0.24						1.19
					est			Bet				Go			

Pressure Losses Fitting Efficiency – Round Elbows

	Smooth Radius, R/D = Smooth Ra		dius, R/D =	Smooth Rad	ius, R/D =	Smooth Rad	lius, R/D =	Smooth Rad	lius, R/D =	Smooth Rad	lius, R/D =	
	2.5 (Tab	le A-7A)	2.0 (Tab	le A-7A)	1.5 (Tabl	e A-7A)	1.0 (Tabl	e A-7A)	0.75 (Tab	le A-7A)	0.50 (Tab	le A-7A)
Velocity	Loss Coefficient	Δp _t (inch	Loss Coefficient	Δp _t (inch	Loss Coefficient	∆p _t (inch	Loss Coefficient	Δp _t (inch	Loss Coefficient	∆p, (inch	Loss Coefficient	∆p _t (inch
(fpm)	С	water)	С	water)	С	water)	с	water)	С	water)	С	water)
1000	0.12	0.01	0.13	0.01	0.15		0.22	0.01	0.33		0.71	0.04
4000		0.12		0.13								0.70

Pressure Losses -Fitting Efficiency – Elbows What if the Elbow Doesn't Fit?

Example: a Round Elbow with an R/D =1.5 was specified but wont fit. Will a smaller R/D fit or do I have to use a Mitered Elbow? The Velocity is 2000 fpm.

Losses of the Four Different Elbows:

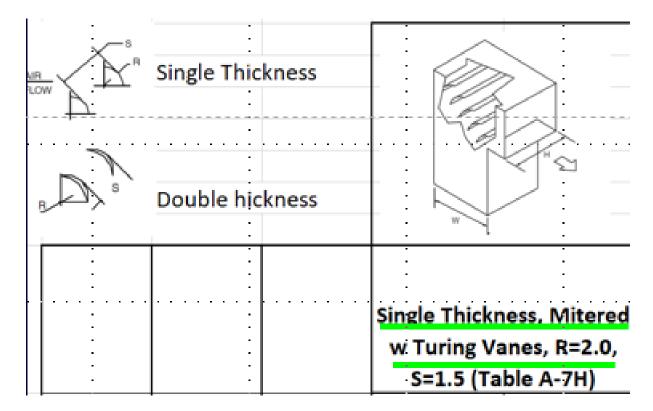
- \circ R/D = 1.5 Elbow, Pressure Loss is 0.04 in wg
- \circ R/D = 1.0 Elbow, Pressure Loss is 0.06 in wg
- Mitered Elbow w Vanes, Pressure Loss is 0.11 in wg
- Mitered Elbow w/o Vanes, Pressure Loss is 0.30 in wg

Questions:

- Will the R/D= 1.0 Elbow Fit?
- Will R/D=1.0 Elbow Change the Design Leg?
- Will the Mitered Elbow Change the Design Leg and Thus increase the Fan Operating Pressure?
- What is the Cost Differential?
- How will it Affect the Balancing?

Pressure Losses

Fitting Efficiency – Rectangular Elbows


Compariso	on of Round	Elbow Los	ses	Loss Coefficie	ents from SM/	ACNA HVAC S	systems Duct	Design Appen	ndix A					
WxH	12	x	12	inches	H /W = 1.0									
Area =	1.00	ft ²												
ρ = 0.075 l	b _m /ft ³	Standard (Conditions											
						H				× ×				
			Splitter Van	Radius w 3 e R/W = 0.50 e A-7G)	Smooth R Splitter Va 0.50 (Tab	nes R/W =	Smooth R Splitter Va 0.50 (Tab	nes R/W =	Smooth Rad Vanes F (Table			lius without /W = 1.5 • A-7F)	Mitered wit (Table	
	Velocity Pressure	Q = AV	Loss		Loss		Loss		Loss		Loss		Loss	·
Velocity	p _v (inch		Coefficient		Coefficient	Δp _t (inch	Coefficient	∆p _t (inch	Coefficient	Δp _t (inch	Coefficient	Δp _t (inch	Coefficient	∆p _t (inch
(fpm)	water)	(cfm)	c	water)	с	water)	C	water)	С	water)	С	water)	с	water)
1000						0.00		0.00	0.21	0.01	0.17	0.01	1.2	0.07
2000						0.01	0.05	0.01	0.21	0.05		0.04		0.30
3000	0.56	3000	0.01	0.01	0.02	0.01	0.05	0.03	0.21	0.12	0.17	0.10		0.67
4000	0.99	4000	0.01	0.01	0.02	0.02	0.05	0.05	0.21	0.21	0.17	0.17	1.2	1.19
			Be	est			Bet	ter			Go	od		

Pressure Losses Fitting Efficiency – Rectangular Elbows

WxH	12	x	12	inches	H /W = 1.0									
Area =	1.00	ft ²												
p = 0.075	b _m /ft ³	Standard C	Conditions											
	Single Thic													
				ness, Mitered anes, R=2.0, ble A-7H)	Single Thickn w Turing Va S=3.25 7H	nes, R=4.5, (Table A-	Double Th Mitered w Tu R=4.5, 1 (Table	uring Vanes, S=3.25	Double Ti Mitered w Tu R=2.0, (Table	uring Vanes, S=1.5	Double T Mitered w To R=2.0, (Table	uring Vanes, S=2.25	Mitered wit (Table	
Velocity (fpm)	Velocity Pressure p _v (inch water)	Q = AV Flow Rate (cfm)	Loss Coefficient C	Δp _t (inch water)	Loss Coefficient C	Δp _t (inch water)	Loss Coefficient C	Δp _t (inch water)	Loss Coefficient C	Δp _t (inch water)	Loss Coefficient C	Δp _t (inch water)	Loss Coefficient C	Δp _t (inch water)
1000	0.06	1000	0.24	0.01	0.26	0.02	0.27	0.02	0.43	0.03	0.53	0.03	1.2	0.07
1500	0.14	1500	0.23	0.03	0.24	0.03	0.25	0.04	0.42	0.06	0.53	0.07	1.2	0.17
2000	0.25	2000	0.22	0.05	0.23	0.06	0.24	0.06	0.41	0.10	0.50	0.12	1.2	0.30
	0.39	2500	0.20	0.08	0.22	0.09	0.23	0.09	0.40	0.16	0.49	0.19	1.2	0.4
2500	0.55													

Pressure Losses Fitting Efficiency – Rectangular Elbows

Most Efficient Mitered Elbow

Pressure Losses Fitting Efficiency – Rectangular Elbows

SMACNA Research Shows:

- Vanes with trailing edges have higher loss coefficients than standard construction. (section 5.16.2)
- Removing every other vane can more than double the pressure loss. (section 5.16.3)
- Turning vanes are 90°; if used in elbows of other angle the pressure loss will increase.

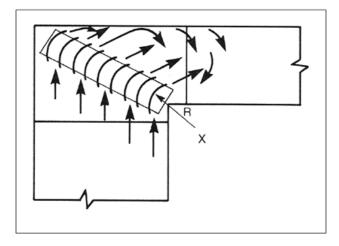
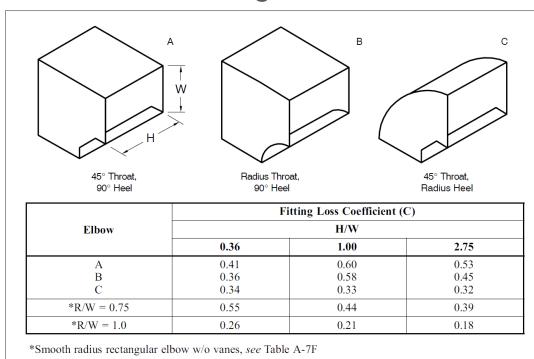
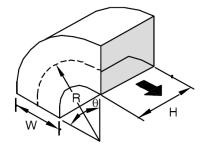
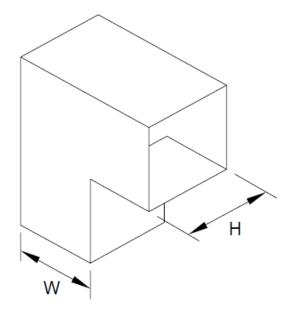


FIGURE 5-14 TURBULENCE CAUSED BY IMPROPER MOUNTING AND USE OF TURNING VANES

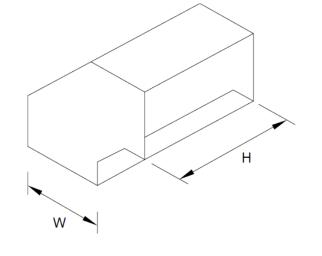
Pressure Losses Fitting Efficiency – Other Rectangular Elbows

Other elbows without turning vane configurations can reduce the elbow loss coefficient, including:


FIGURE 5-21 DIFFERENT CONFIGURATION ELBOW RESEARCH

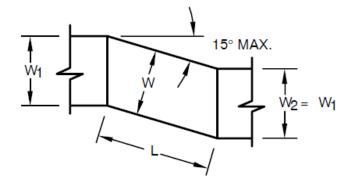
F. ELBOW, RECTANGULAR, SMOOTH RADIUS WITHOUT VANES



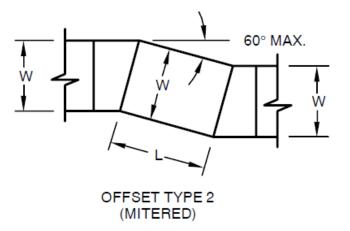
			Coef	ficients	for 90°	elbows	s (See No
					Coeffi	cient C	
R/W						H/W	
K/W	0.25	0.5	0.75	1.0	1.5	2.0	3.0
0.5	1.5	1.4	1.3	1.2	1.1	1.0	1.0
0.75	0.57	0.52	0.48	0.44	0.40	0.39	0.39
1.0	0.27	0.25	0.23	0.21	0.19	0.18	0.18
1.5	0.22	0.20	0.19	0.17	0.15	0.14	0.14
2.0	0.20	0.18	0.16	0.15	0.14	0.13	0.13

Pressure Losses Fitting Efficiency – Other Rectangular Elbows

TYPE RE 4 SQUARE THROAT ELBOW WITHOUT VANES (1000 FPM (5 mps) MAXIMUM VELOCITY)



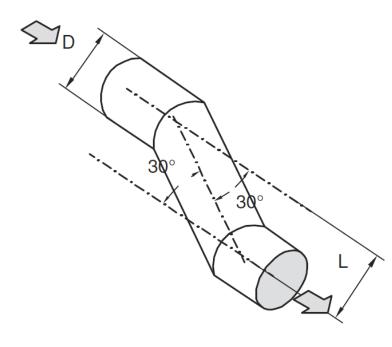
TYPE RE 7 45° THROAT 45° HEEL


ALL 45° THROATS ARE 4" (100 MM) MINIMUM

amcainternational

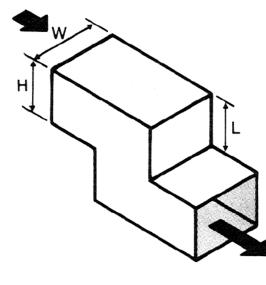
Pressure Losses Fitting Efficiency – Offsets

OFFSET TYPE 1 (ANGLED)



OFFSET TYPE 3 (RADIUSSED OR OGEE)

Pressure Losses Fitting Efficiency – Offsets

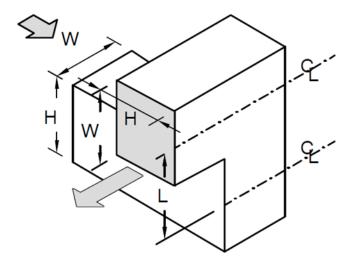

K. ELBOWS, 30°, ROUND, OFFSET

	Coefficients C (See Note 5)												
L/D	0	0.5	1.0	1.5	2.0	2.5	3.0						
С	0	0.15	0.15	0.16	0.16	0.16	0.16						

Pressure Losses Fitting Efficiency – Offsets

I. ELBOWS, 90 DEGREES, RECTANGULAR, Z-SHAPED

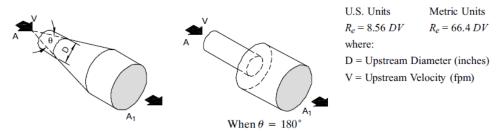
(NO VANES)


		Coe	fficients	for W/	H = 1.0	(See No	otes 4)			
L/H	0	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
С	0	0.62	0.90	1.6	2.6	3.6	4.0	4.2	4.2	4.2
L/H	2.4	2.8	3.2	4.0	5.0	6.0	7.0	9.0	10.0	∞
С	3.7	3.3	3.2	3.1	2.9	2.8	2.7	2.6	2.5	2.3

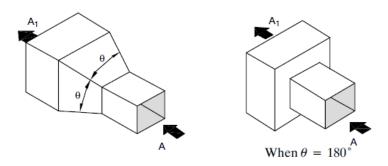
Note 4: For W/H values other than 1.0 apply the following factor:

W/H	0.25	0.50	0.75	1.0	1.5	2.0	3.0	4.0	6.0	8.0
Κ	1.10	1.07	1.04	1.0	0.95	0.90	0.83	0.78	0.72	0.70

Pressure Losses Fitting Efficiency – Offsets


J. ELBOWS, 90°, RECTANGULAR IN DIFFERENT PLANES

		Coef	ficients	for H/V	W = 1.0	: (See N	Notes 4	& 5)		
L/W	0	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
С	1.2	2.4	2.9	3.3	3.4	3.4	3.4	3.3	3.2	3.1
L/W	2.4	2.8	3.2	4.0	5.0	6.0	7.0	9.0	10.0	∞
С	3.2	3.2	3.2	3.0	2.9	2.8	2.7	2.5	2.4	2.3

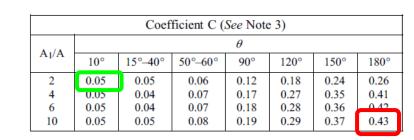

Pressure Losses Fitting Efficiency – Diverging Transitions

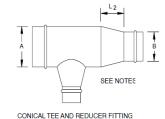
A. TRANSITION, ROUND, CONICAL

			Coet	fficient C (See Note 6)						
D	A ₁ /A		θ									
Re		_16°	20°	30°	45°	60°	90°	120°	180°			
0.5×10^{5}	2	0.14	0.19	0.32	0.33	0.33	0.32	0.31	0.30			
	4	0.22	0.30	0.46	0.61	0.68	0.64	0.63	0.62			
	6	0.27	0.33	0.48	0.66	0.77	0.74	0.73	0.72			
	10	0.29	0.38	0.59	0.76	0.80	0.83	0.84	0.00			
	≥16	0.31	0.38	0.60	0.84	0.88	0.88	0.88	0.88			
2×10^{5}	2	0.07	0.12	0.23	0.28	0.27	0.27	0.27	0.26			
	4	0.15	0.18	0.36	0.55	0.59	0.59	0.58	0.57			
	6	0.19	0.28	0.44	0.90	0.70	0.71	0.71	0.69			
	10	0.20	0.24	0.43	0.76	0.80	0.81	0.81	0.81			
	≥16	0.21	0.28	0.52	0.76	0.87	0.87	0.87	087			
$\geq 6 \times 10^5$	2	0.05	0.07	0.12	0.27	0.27	0.27	0.27	0.27			
	4	0.17	0.24	0.38	0.51	0.56	0.58	0.58	0.57			
	6	0.16	0.29	0.46	0.60	0.69	0.71	0.70	0.70			
	10	0.21	0.33	0.52	0.60	0.76	0.83	0.84	0.83			
	≥16	0.21	0.34	0.56	0.72	0.79	0.85	0.87	0.89			

B. TRANSITION, RECTANGULAR, PYRAMIDAL

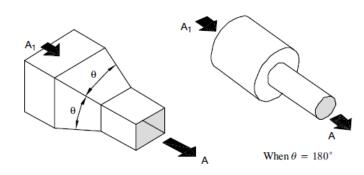
				Coeffic	ient C (Se	e Note 6)									
A /A		θ													
A ₁ /A		16°	20°	30°	45°	60°	90°	120°	180°						
2	\square	0.18	0.22	0.25	0.29	0.31	0.32	0.33	0.30						
4	<u>۱</u>	0.50	0.43	0.50	0.56	0.61	0.63	0.63	0.63						
6		0.42	0.47	0.58	0.68	0.72	0.76	0.76	0.75						
≥ 10		0.42	0.49	0.59	0.70	0.80	0.87	0.85	0.86						

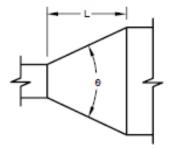

Note 6: A = Area (Entering airstream), A_1 = Area (Leaving airstream)


Use the velocity pressure (V_p) of the upstream section. Fitting loss $TP = C \times V_p$ Table A-8 Loss Coefficients, Transitions (Diverging Flow)

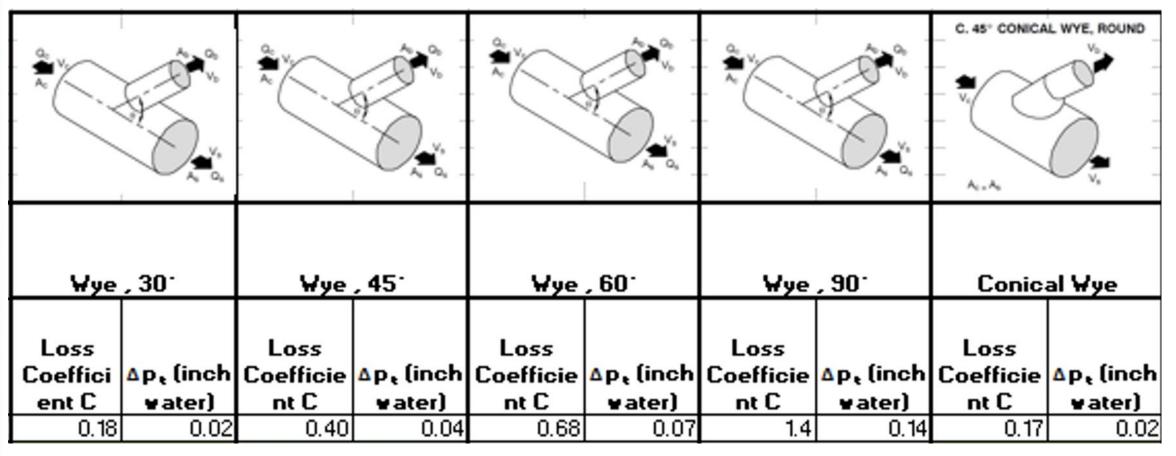
Keep the angle and change in area low. 16° , A1/A = 2 has much lower loss coefficient than 180° , A1/A = 10

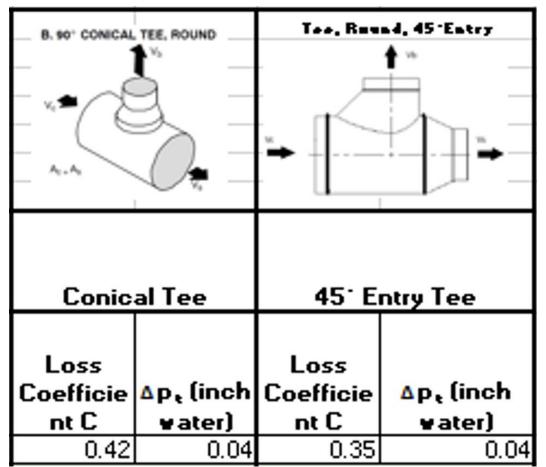
Pressure Losses Fitting Efficiency – Converging Transitions

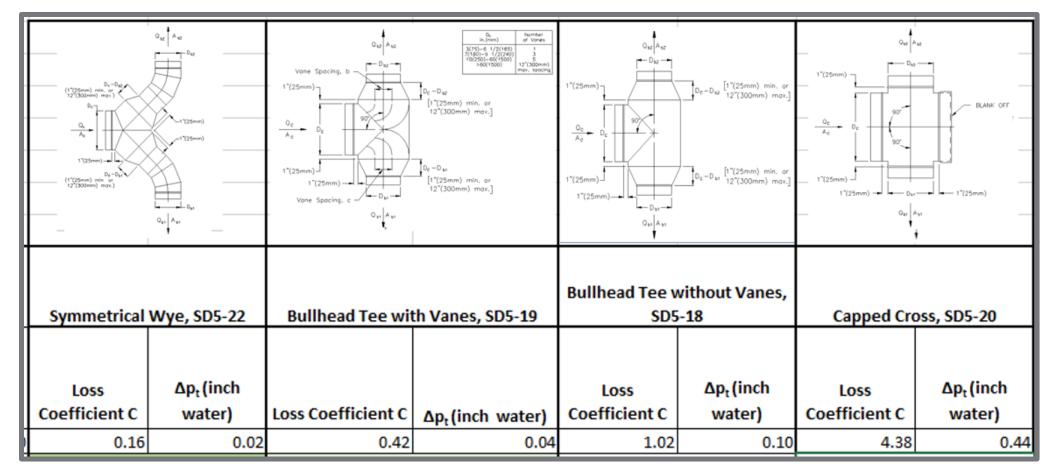

A. CONTRACTION, ROUND AND RECTANGULAR, GRADUAL TO ABRUPT



ALTERNATE ARRANGEMENT

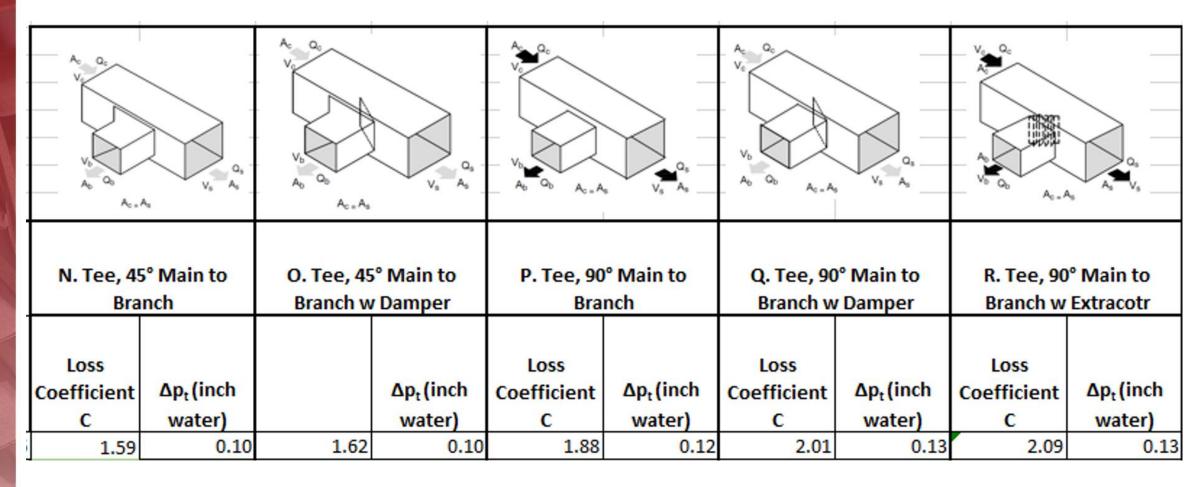

L₂ = A – B (4" (102 mm) MIN.)

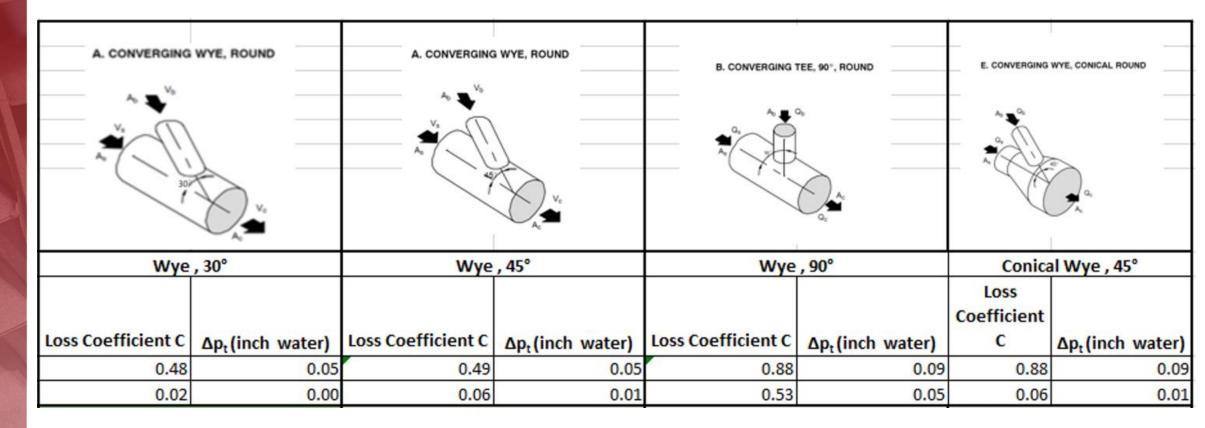


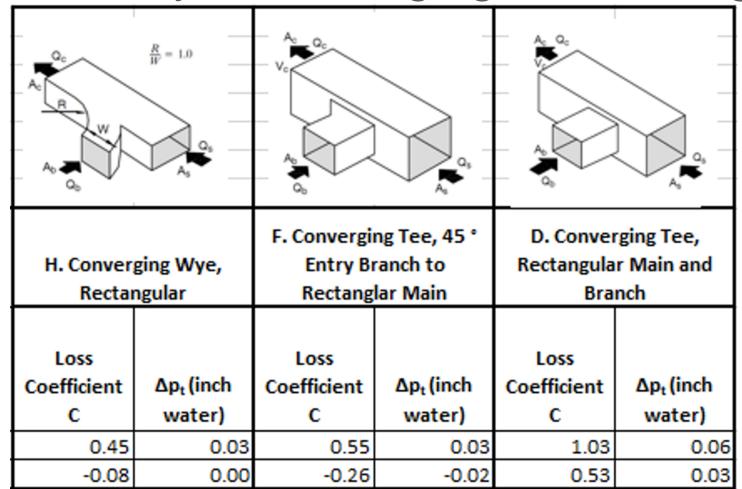


CONCENTRIC TRANSITION 9 MAX. 45° DIVERGING, 60° CONVERGING

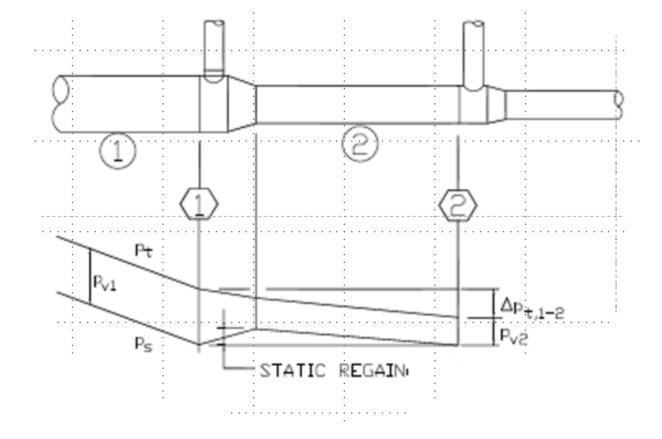
Keep the angle and change in area low. 10° , A1/A = 2 has much lower loss coefficient than 180°, A1/A = 10




Compariso	n of Recta	ngular Diver	ging Flow Fit	tings				ACNA HVAC	Systems Duct	Design Appe	ndix A						
W _c x H _c	12	x	12	inch	A _c =	1.00	ft ²	Q _c =	1000	cfm	V _c =	1000	fpm				
W _s x H _s	12	x	12	inch	A _s =	1.00	ft ²	Q _b =	500	cfm	V _s =	500	fpm				
W _b x H _b	7	x	7	inch	A _b =	0.34	ft ²	Q ₅ =	500	cfm	V _b =	1469	fpm				
$Q_b/Q_c =$	0.50		$V_b/V_c =$	1.47							P _{vc} =	0.06	inch water				
											P _{vs} =	0.02	inch water				
				in.). $Q= airfloorure (V_p) of the$							P _{vb} =	0.13	inch water				
ρ = 0.075 lk				-11 Loss	-	-			Wyes) ^{, A}								
Standard C	conditions							•									
		Ac ac		Ac Oc V V OC Ac Oc		An Oc Vi Ac Ob Ac						ting damj	oter 3 discu for bronch				
										· · ·		Q. Tee, 90° Main to Branch w Damper		° Main to Extracotr	velo	(Table A-11N), velocity and air loss coefficients	
Velocity Vu = Vc	Velocity Pressure p _v (inch	Loss Coefficient	∆p _t (inch		∆p _t (inch	Loss Coefficient	∆p _t (inch	Loss Coefficient	∆p,(inch	Loss Coefficient	∆p _t (inch	ers o	r extractor				
vu = vc (fpm)	water)	Coefficient	water)		water)	Coefficient	water)	Coefficient	water)	Coefficient	water)						
1000	0.06			1.62	· · · · ·			-	0.13	2.09	0.13		the turbul				
	Best Better,			will increase				Good. But will increase loss in main		Increases Loss in Main, not recommend		in the bird in the m					


ch Fittings

ses the use of less expensive tap fitducts and the alimination of "malphon"


ractors. A 45 degree entry tap fitting when used within the proper range of low volume ratios, has lower fitting than rectangular taps with the damp-(Tables A-11Q and R). Not only did cotape Destroying Duct Design Myths nce created by these air extractor deinch ducts, but also the turbulence in supply air duct.

Duct Design –Static Regain

$$\begin{split} \Delta p_{t,1-2} &= \Delta p_{s,1-2} + \Delta p_{v,1-2} \\ \Delta p_{s,1-2} &= \Delta p_{t,1-2} - \Delta p_{v,1-2} \\ \Delta p_{s,1-2} &= 0 \\ \Delta p_{t,1-2} &= \Delta p_{v,1-2} \\ \text{Satisfid When:} \\ \Delta p_{v,1-2} - \Delta p_{t,1-2-} &= 0 \\ \text{or} \\ p_{v1-} p_{v2-} \Delta p_{t,1-2-} &= 0 \end{split}$$

amcainternational

If you are designing using Static Regain Duct Design:

□ Use Efficient Fittings in the Initial Design.

- If there is Excess Pressure in a Non-Design Leg, Consider Using a Smaller Size Duct.
- If there is still Excess Pressure Look at Substituting Less Efficient Fittings.

Resources

- AMCA International: www.amca.org
- AMCA Publication: www.amca.org/store
 - > 200-95 (R2011): Air Systems (Available for purchase)
- SMACNA HVAC Systems Duct Design Manual 2006, 4th Edition: www.smacna.org/store (Available for purchase)

Thank you for your time!

To receive PDH credit for today's program, you <u>must</u> complete the online evaluation, which will be sent via email 1 hour after this webinar.

PDH credits and participation certificates will be issued electronically within 30 days, once all attendance records are checked and online evaluations are received.

Attendees will receive an email at the address provided on your registration, listing the credit hours awarded and a link to a printable certificate of completion.

Questions?

NEXT PROGRAM

Join us for our next AMCA *insite*[™]Webinar:

- Wednesday, April 21
- 6:00-7:00pm CT
- RSES Journal & AMCA insite WEBINAR: Field Modifications of Fire, Smoke, and Combination Fire/Smoke Dampers
- Presenters: James Carlin, Product Manager- Dampers, AMCA Member Company

>> For additional webinar details go to: www.amca.org/webinar