

New Fan Efficiency Requirements in ANSI/ASHRAE/IES 90.1-2019

AMCA insite[™] Webinar | AMCA International | www.amca.org

COPYRIGHT MATERIALS

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display and use of the educational activity without written permission of the presenter is prohibited.

© AMCA International 2020

New Fan Efficiency Requirements in ANSI/ASHRAE/IES 90.1-2019

Purpose and Learning Objectives

The purpose of this presentation is to inform participants about AMCA International, the AMCA Certified Ratings Program (CRP), and the Fan Energy Index (FEI) Metric that is replacing Fan Efficiency Grade (FEG) in energy codes, standards, and regulations

At the end of this presentation you will be able to:

- Explain how FEI is replacing FEG in model energy codes and standards, including ASHRAE 90.1-2019 and ASHRAE 189.1-2020.
- Apply FEI for sizing and selecting fans for Constant Speed (CS) and Variable Air Volume (VAV) systems.
- Describe how to find FEI ratings from manufacturers.

FEI Outline

- •FEI Basics
- FEI in ASHRAE 90.1 and 189.1
- How to Specify AMCA Certified FEI Ratings
- FEI in CV and VAV Systems
- AMCA Resources for FEI

Fan Energy Index Basics

Why Change from FEG?

- Origin of FEI is a now-stalled USA federal regulation
- Problems with Fan Efficiency Grade (FEG)
 - Not wire-to-air
 - Bare-shaft fan only
 - No inclusion of motors, drives
 - Peak total efficiency only
 - Needed a selection window applied by designers
 - "Fans must be selected to operate within 10 percentage points of peak total efficiency"
 - Cannot apply such a window for an equipment/appliance regulation

FEI Fixes FEG Problems

- FEI fixes all these issues:
 - Wire to air covers fan, transmission, motor, speed control
 - Considers off-peak fan efficiency
 - Static or total pressure, as appropriate
 - Includes fans testable to:
 - Most commercial/industrial fans: AMCA 210 / ISO 5801
 - Jet fans: AMCA 250 / ISO 13350
 - Induced flow fans: AMCA 260

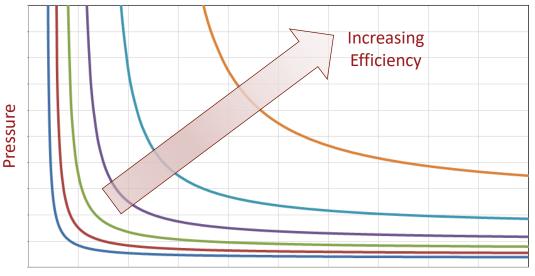
Benefits of FEI

- Clarity
 - FEI includes effect of losses from fans, motors, and drives
 - FEI rating allows instant identification of compliance
- Flexibility
 - Fan selections allow variety of fan types, sizes, motors, and drives
 - Facilitates consideration of budget, acoustics, form factor, etc.
- Simplicity
 - Intuitive metric that directly reflects power consumed by the fan
- Greater energy savings
 - Net result is greater energy savings and lower lifecycle cost

Wire-to-Air Metric

FEI – Fan Energy Index

• Defined in AMCA 208:

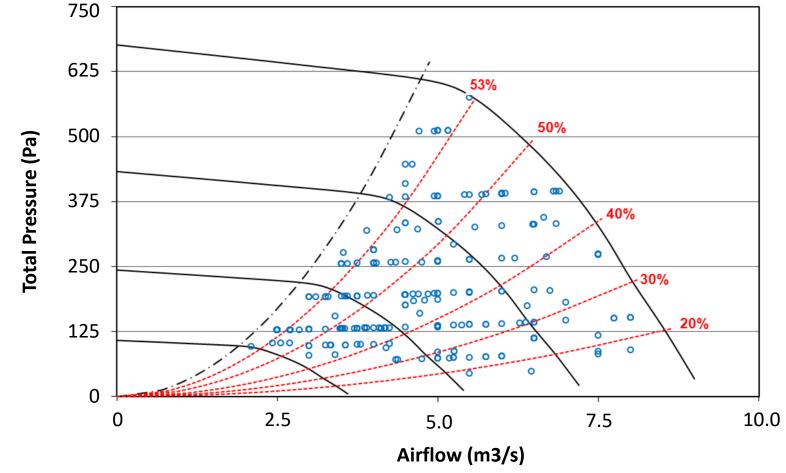

FEI = $\frac{Reference Fan Electrical Input Power}{Actual Fan Electrical Input Power}$

$$FEI = \frac{FEP_{ref}}{FEP}$$

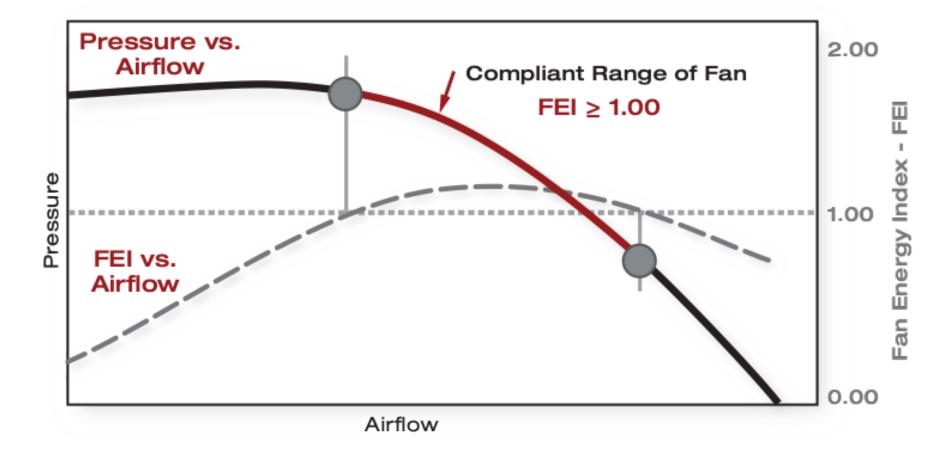
- FEP ref and FEP calculated at the same airflow and pressure
- FEI is a relative measure of power required for a given duty point relative to the Reference Fan

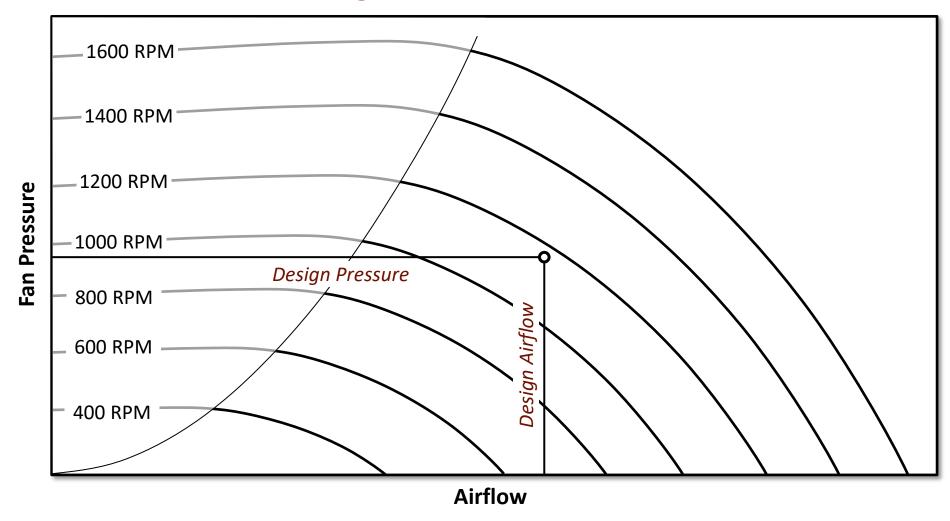
The Reference Fan

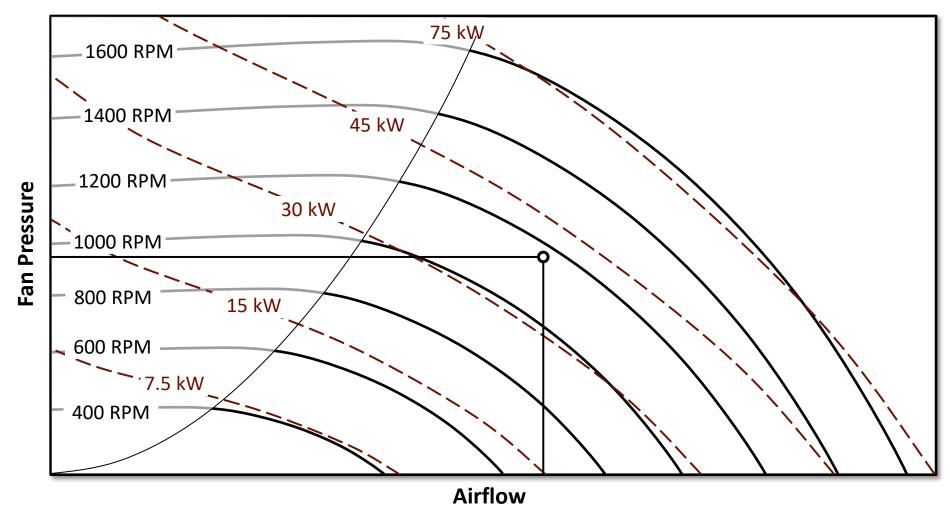
- Think of the Reference fan as a "Reasonably Efficient Fan"...
 - Established by DOE and the fan industry
 - Later documented in AMCA 208
- Empirical function of fan efficiency vs. airflow and pressure:
 - 1. Independent of:
 - Fan type
 - Fan size
 - Motor type
 - Belt or direct drive
 - 2. Fixed in time

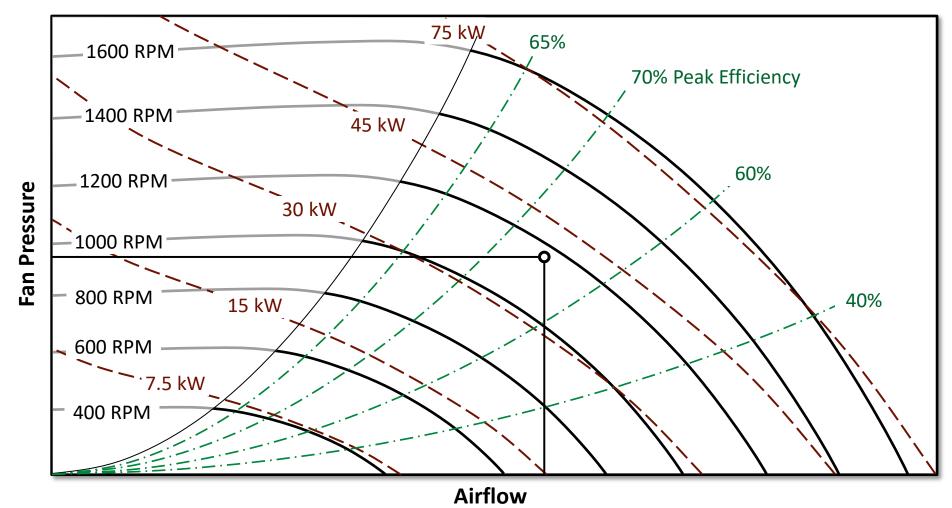


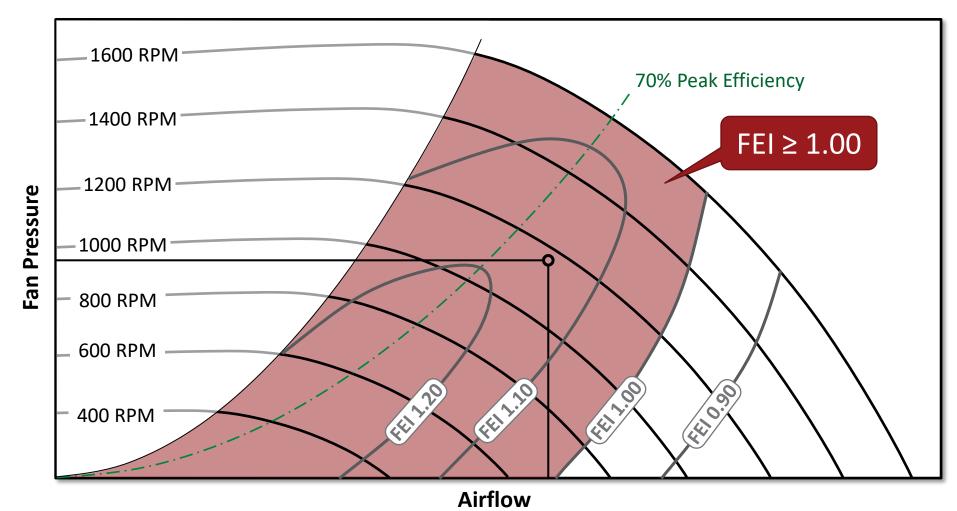
Airflow

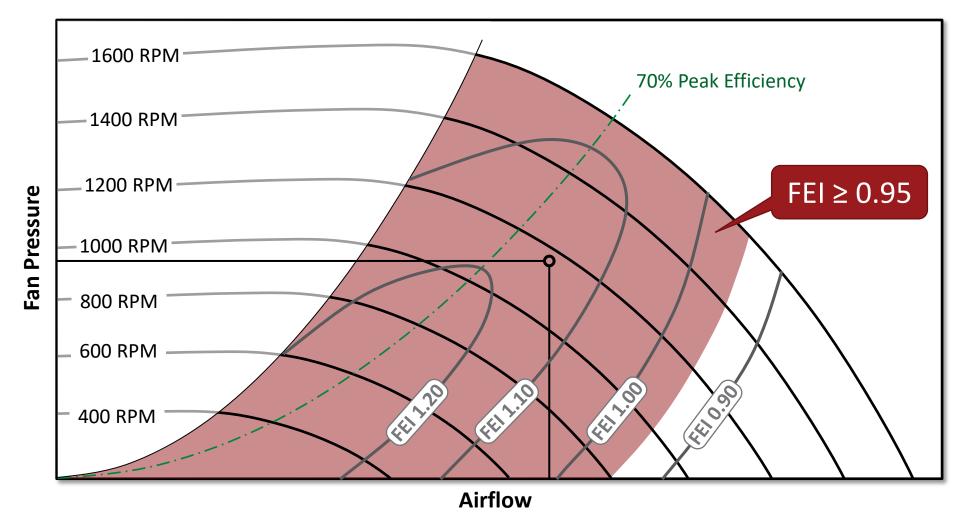

Fan Selection


- Fan efficiency is highly dependent on where the fan is operating on the fan curve.
- Fans are typically selected to provide airflow at a designated duty point.
 - Airflow
 - Pressure
 - Air Density (sea level vs. high elevation)
- Turns out, help is needed for selecting fans.


Square Inline Fan – Size 30 295 Actual Fan Selections




FEI ≥ 1.00 Defines Compliant Range for Selection



FEI Improves Fan Selections

- Enables comparisons of:
 - Different fan types
 - Different fan sizes
 - Different motor and drive combinations
- All at the same design duty point!

FEI Examples – Stand Alone Fans

Utility set:

- 4.72 m³/s (10,000 cfm)
- 500 Pa (2.0 in.wg) static pressure
- Sea level (standard atmospheric pressure)

Sidewall prop fan:

- 9.44 m³/s (20,000 cfm)
- 63 Pa (0.25 in.wg) static pressure
- Sea level (standard atmospheric pressure)

...apologies for the inch-pound units for following examples...

Product Type						Selectio	n Criteria	Performa	Ince Modifiers		4.72	2 m	³ /s	at 5	00 P	a s	stat	ic	
Model: BCV - Look Up										m at	at 2.0 in.wg) 🖵								
Air Performance Settings						Volumet	ric flow:		10000 c		(10 ,			mat	. 2.0		.vvg		ļ
Altitude above sea level 0 ft						Static pressure: 2.000 in WC					Size:					90 💌 600 💌			
Fan inlet			0.000 i	n WC		Drive m	ethod:	6	0 Hz Belt Driv	/e 🔽			Outlet vel	ocity:	FPN				
Fan inlet			70 F										Casadi						DD
Design te		re	70 F										Speed:						RPI
Relative Inlet den			0.0750	lb/ft³									Power:						BHI
211102 0011			0.07.00	12710		I													
												Show	Available	Products	Add Av	ailable	Products	to Resu	ts
Model	Size-	Cl	Dia (%)	Widt h (%)	% of Peak	Drive Type	RPM	Max RPM	Std Pwr (BHP)	Op Pwr (BHP)	Out Vel (FPM)	Stat Eff (%)	Tot Eff (%)	In LwA	Out LwA	Rel Cost	FEI	FEP (KW)	
BCV	200	Ш	100	100	24.42	BD	2,323	2,490	10.52	10.52	4348	29.98	47.61	99	N/A	0.41	0.81	8.88	
BCV	222	II	100	100	34.34	BD	1,761	2,238	8.00	8.00	3509	39.43	54.53	94	N/A	0.55	0.95	6.77	
BCV	245	Ι	100	100	45.33	BD	1,392	1,577	6.50	6.50	2899	48.50	61.18	90	N/A	0.50	1.07	5.59	
BCV	270	Ι	100	100	56.72	BD	1,110	1,397	5.42	5.42	2387	58.13	68.43	88	N/A	0.61	1.20	4.71	
BCV	300	Ι	100	100	71.14	BD	892	1,257	4.72	4.72	1934	66.81	74.59	86	N/A	0.74	1.31	4.11	
BCV	330	Ι	100	100	83.61	BD	748	1,143	4.35	4.35	1597	72.49	78.25	84	N/A	0.85	1.38	3.79	
BCV	365	Ι	100	100	96.58	BD	618	995	4.10	4.10	1305	76.87	80.95	76	N/A	1	1.43	3.58	
BCV	402	Ι	100	100	99.91	BD	551	903	4.20	4.20	1074	75.05	77.75	76	N/A	1.73	1.39	3.67	
)	
																J		•	
Transf	Transfer to Fanulator AMCA Licensed for Sound and Air Performance and Fan Efficiency Grade (FEG). Item Details Item Details										Re	ports	Curves	j					

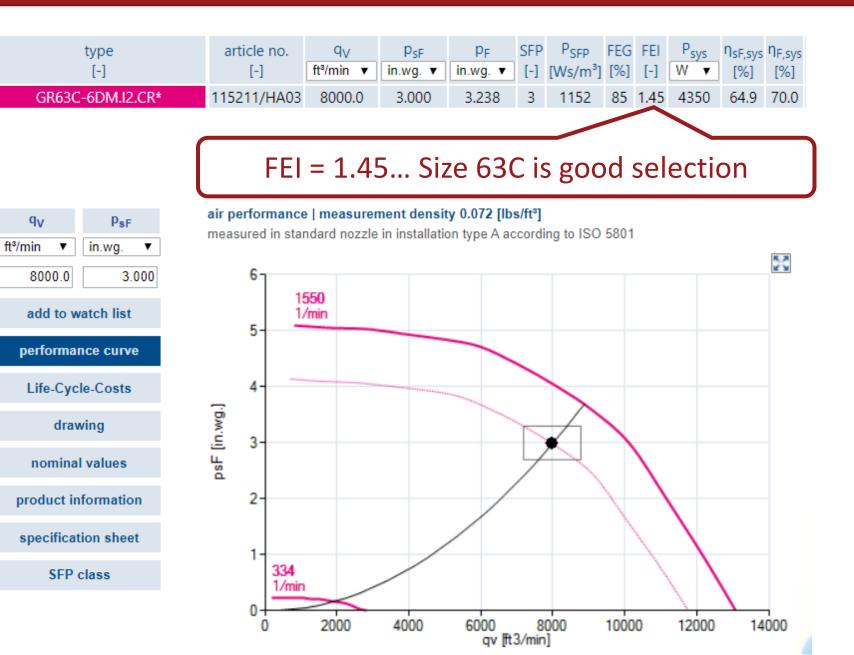
Sidewall Prop Fan

9.44 m³/s at 63 Pa static pressure (20,000 cfm at 0.25 in.wg)

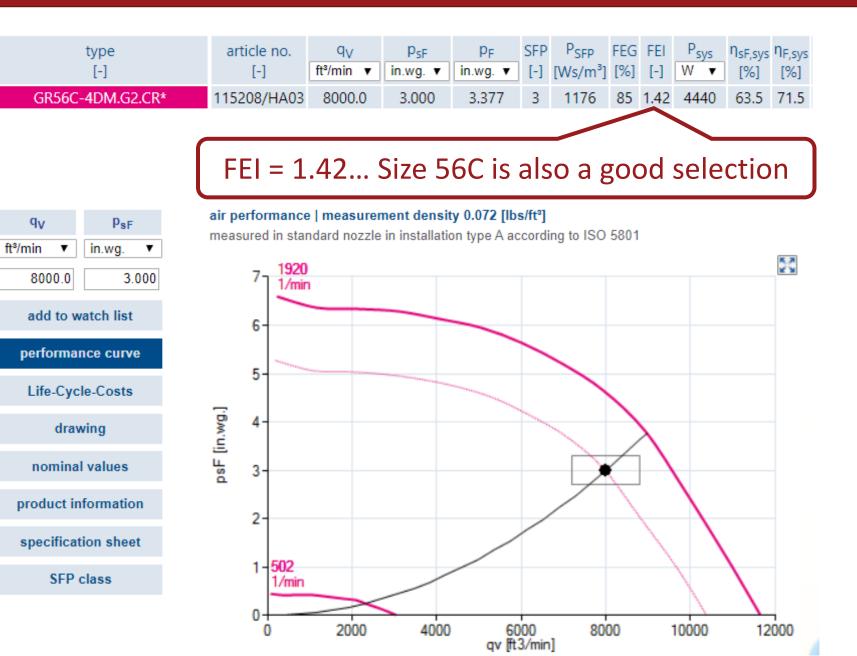
Model	Drive	Volume	SP	Power	Motor	RPM	Max (Fan)	OVEL	TSPD	SE	TE	Pts From	FEG	FEI	UnitWT
		CFM	inwc	HP	HP		RPM	fpm	fpm			PeakTE			lbs
36XLWH	Belt	20000	.25	3.51	5.00	825	895	2715	7883	24%	68%	0%	71	1.05	195
42XLWH	Belt	20000	.25	2.66	3.00	555	870	2006	6175	32%	64%	0%	67	1.37	246
48×LWH	Belt	20000	.25	2.11	3.00	432	650	1558	5471	40%	65%	3%	71	1.70	294
54XLWH	Belt	20000	.25	1.98	2.00	330	611	1234	4686	43%	59%	9%	71	1.81	313
60XLWH	Belt	20000	.25	1.90	2.00	259	550	1001	4085	45%	56%	15%	75	1.88	338
42×MWH	Belt	20000	.25	2.56	3.00	653	821	2006	7265	33%	66%	3%	71	1.42	245
48×MWH	Belt	20000	.25	1.96	2.00	491	726	1558	6218	43%	70%	0%	71	1.82	269
54XMWH	Belt	20000	.25	1.86	2.00	356	558	1234	5056	46%	63%	7%	71	1.92	320
60XMWH	Belt	20000	.25	1.46	1.50	299	530	1001	4716	58%	73%	2%	80	2.40	305
															J
•															

Sidewall Prop Fan

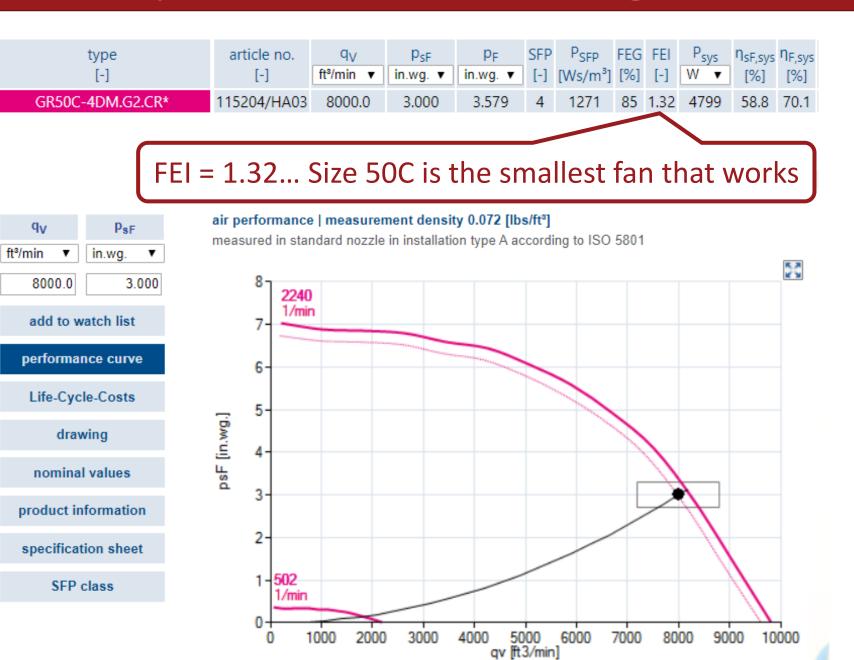
9.44 m³/s at 63 Pa static pressure (20,000 cfm at 0.25 in.wg)


															\
Model	Drive	Volume	SP	Power	Motor	RPM	Max (Fan)	OVEL	TSPD	SE	TE	Pts From	FEG	FEI	LnitWT
		CFM	inwo	HP	HP		RPM	fpm	fpm			PeakTE			lbs
24XLWH	Belt	10000	.25	2.16	3.00	1380	1398	2993	8806	20%	64%	1%	67	0.88	147
30XLWH	Belt	10000	.25	1.34	1.50	768	1061	1939	6132	32%	62%	1%	67	1.38	118
36XLWH	Belt	10000	.25	1.07	1.50	550	895	1357	5255	40%	59%	9%	71	1.70	142
42×LWH	Belt	10000	.25	1.16	1.50	421	870	1003	4684	37%	47%	17%	67	1.58	188
48×LWH	Belt	10000	.25	1.32	1.50	373	650	779	4723	33%	37%	30%	71	1.40	228
54XLWH	Belt	10000	.25	1.30	1.50	283	611	617	4019	33%	36%	32%	71	1.41	272
60XLWH	Belt	10000	.25	1.61	2.00	247	550	500	3896	26%	28%	43%	75	1.16	338
30XMWH	Belt	10000	.25	1.24	1.50	988	1175	1939	7889	35%	67%	1%	71	1.49	121
36XMWH	Belt	10000	.25	.919	1	627	948	1357	5991	47%	69%	3%	-	1.95	142
42×MWH	Belt	10000	.25	.861	1	444	821	1003	4940	50%	63%	6%	-	2.07	188
48×MWH	Belt	10000	.25	1.05	1.50	394	726	779	4989	41%	47%	22%	71	1.73	234
54XMWH	Belt	10000	.25	1.13	1.50	296	558	617	4203	38%	42%	28%	71	1.62	279
60XMWH	Belt	10000	.25	1.03	1.50	261	530	500	4116	42%	45%	30%	80	1.77	305

FEI Example – Fans Embedded in Equipment

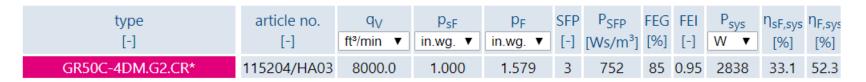

Air handler supply fan:

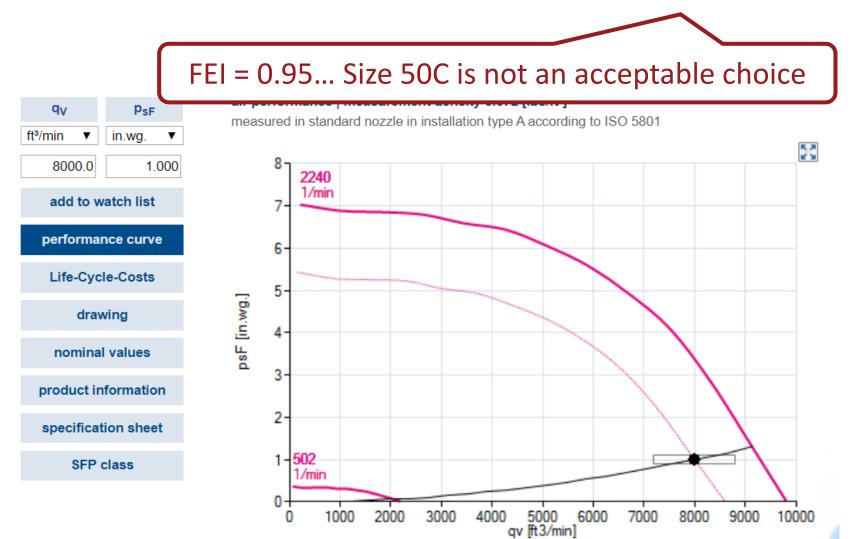
- Direct drive plenum fan
- 3.78 m³/s at 750 Pa static pressure (8000 cfm at 3.0 in.wg)
- FEI ≥ 1.00


<u>Supply Fan – 8000 cfm @ 3"</u>

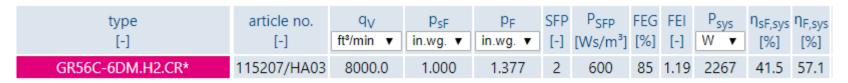
Supply fan – 8000 cfm @ 3"

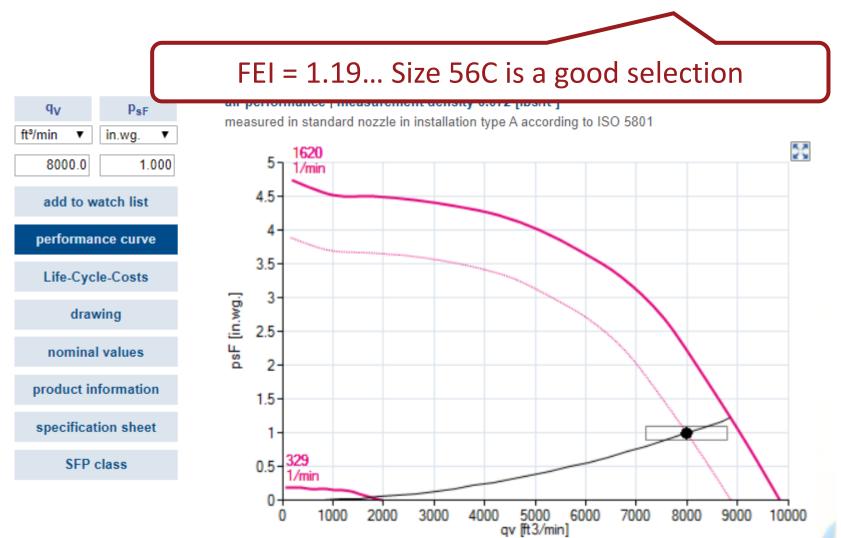
Supply fan – 8000 cfm @ 3"

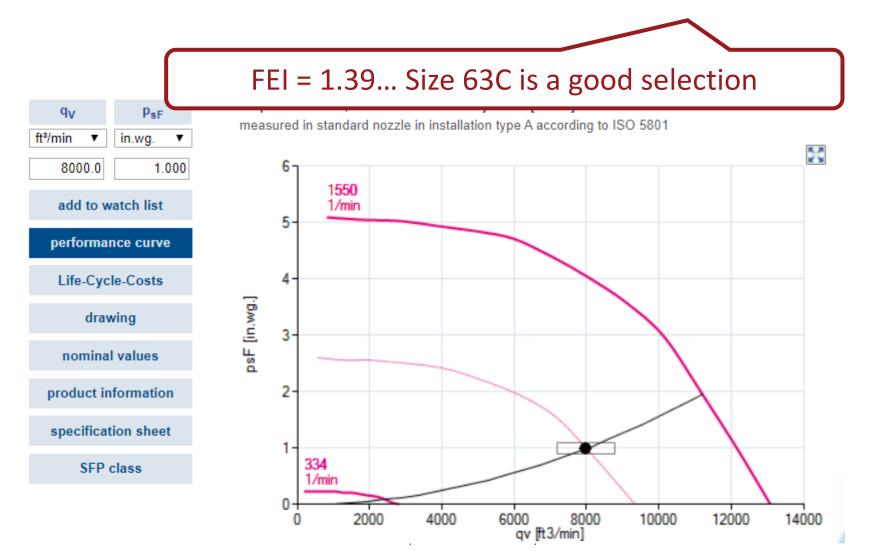



FEI Example – Fans Embedded in Equipment

How about the return fan?


- Direct drive plenum fan
- 3.78 m³/s at 250 Pa static pressure (8000 cfm at 1.0 in.wg)
- FEI ≥ 1.00


<u>Return Fan – 8000 cfm @ 1"</u>


<u>Return Fan – 8000 cfm @ 1"</u>

<u>Return fan – 8000 cfm @ 1"</u>

type [-]	article no. [-]	q _V ft³/min ▼	p _{sF} in.wg. ▼			P _{SFP} [Ws/m³]					
GR63C-6DM.I2.CR*	115211/HA03	8000.0	1.000	1.238	2	513	85	1.39	1938	48.5	60.1

FEI Example – Fans Embedded in Equipment

	Supp	ly Fan	Return Fan					
Fan Size	FEP (kW)	FEI	FEP (kW)	FEI				
50C	4.80	1.32	2.83	0.95				
56C	4.44	1.42	2.27	1.19				
63C	4.35	1.45	1.94	1.39				

Benefits of FEI

- Clarity
 - FEI includes effect of losses from fans, motors, and drives
 - FEI rating allows instant identification of compliance
- Flexibility
 - Fan selections allow variety of fan types, sizes, motors, and drives
 - Facilitates consideration of budget, acoustics, form factor, etc.
- Simplicity
 - Intuitive metric that directly reflects power consumed by the fan
- Greater energy savings
 - Net result is greater energy savings and lower lifecycle cost

FEI in Codes, Standards and Regulations

FEI in Codes, Standards & Regulations

- Model energy standard
- Model energy code
- Model high-performance building (green) building standard/code
- State building energy codes
- Federal efficiency regulations
- State appliance regulations

- -• ASHRAE 90.1 2019
- International Energy Conservation Code (IECC) - 2021
 - ASHRAE 189.1 / Intl. Green Construction Code (IGCC) -2020
- California Title 24; states that adopt ASHRAE 90.1 or IECC

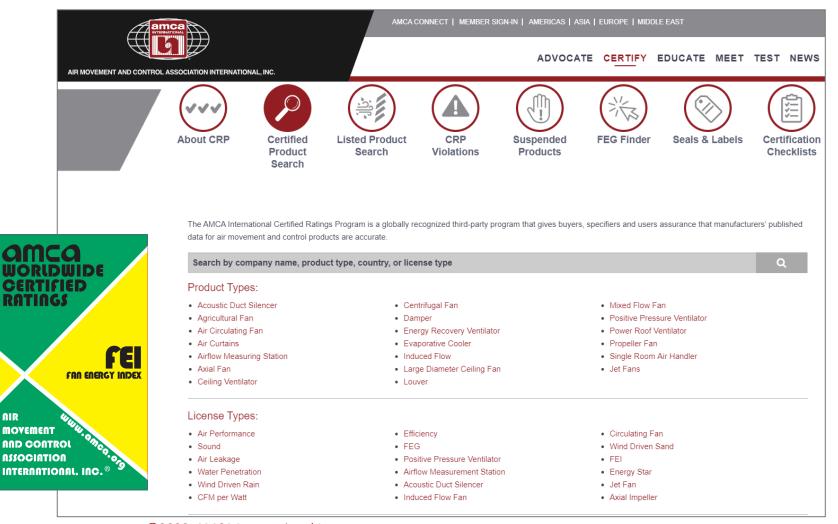

New: Florida, Oregon

- U.S. Dept. of Energy
- California Title 20

Baseline ASHRAE 90.1 and IECC Language

- FEI <u>></u> 1.00;
- FEI <u>></u> 0.95 for VAV
- FEI calculated at "fan system design conditions"
- Covered
 - Standalone fans (including PRVs) ≥ 1.00 HP (0.89 kW)
 - Embedded fans and fan arrays > 5.0 HP (4.1 kW)
- Exempt
 - Fans embedded in equipment that is regulated or 3rd party-certified for air performance or energy performance
 - Reversible tunnel ventilation fans
 - Fans for high temperatures, explosive atmospheres, high temperatures, or emergency conditions
 - Ceiling fans
 - Fans not in scope of AMCA 208

FEI <a> 0.95 Defines Compliant "Bubbles" for Variable Fan Speeds


Airflow ©2020, AMCA International,Inc.

Green/Stretch Codes

- •ASHRAE 189.1-2020 and IgCC 2021
- FEI \geq 1.10 for covered fans
- No new exemptions from baseline
- No removal of exemptions from baseline
- Level does not change for constant or variable speed

AMCA Certified FEI Ratings

- AMCA certifying fans and manufacturer software for FEI
 - 285 product lines thus far
- Check for FEI certifications at www.amca.org/certify
 - Click on "Certified Product Search" and search by "license type"
- Ratings found using manufacturer's sizing/selection software

AMCA Certified Ratings Program (CRP)

Applying FEI in Constant Speed and VAV Systems

Sizing/Selection Example

- ASHRAE 90.1-2019:
 - FEI > 1.00 at fan system design conditions (duty point)
 - FEI \geq 0.95 for VAV
 - Air flow rate: 8.50 m³/s (18,000 cfm)
 - Air pressure (static): 1,350 pascal (5.4 in.wg)
 - Air density: Standard (sea level)
 - For constant flow, duty point is at 100% flow
 - For VAV, hypothetical duty points are:
 - 40% flow: 4.25 m³/s (7,200 cfm)
 - 70% flow: 5.95 m³/s (12,800 cfm)
 - 100% flow: 8.50 m3/s (18,000 cfm)

Example Constant Flow

FEI <u>></u> 1.00

Impeller diameter in (mm)	Fan Impeller Type (all double width)	FEI @ 100% Flow
18 (464)	Airfoil	0.90
20 (508)	Airfoil	1.05
22 (565)	Airfoil	1.13
24 (622)	Airfoil	1.23
27 (686)	Airfoil	1.21
18 (464)	Backward inclined	0.82
20 (508)	Backward inclined	0.93
22 (565)	Backward inclined	1.05
24 (622)	Backward inclined	1.16
27 (686)	Backward inclined	1.17

Example VAV

$\mathsf{FEI} \ge 0.95$

Impeller diameter in (mm)	Fan Impeller Type (all double width)	FEI @ 40% Flow	FEI @ 70% Flow	FEI @ 100% Flow
18 (464)	Airfoil	1.05	0.89	0.90
20 (508)	Airfoil	1.17	1.06	1.05
22 (565)	Airfoil	1.21	1.15	1.13
24 (622)	Airfoil	1.24	1.25	1.23
27 (686)	Airfoil	1.20	1.23	1.21
16 (406)	Backward inclined	1.05	0.83	OVERSPEED
18 (464)	Backward inclined	1.02	0.90	0.82
20 (508)	Backward inclined	1.11	0.94	0.93
22 (565)	Backward inclined	1.21	1.12	1.05
24 (622)	Backward inclined	1.22	1.18	1.16
27 (686)	Backward inclined	1.19	1.20	1.17

Guidance for VAV Systems

- Because slowing a fan's rotational speed generally increases the FEI rating:
 - Best duty point for VAV is hottest day of year, needing 100% airflow.
 - Select fan to have an acceptable FEI rating at the 100% flow rate.
 - This will ensure fan is compliant at loads below 100% flow rate.
- If the fan meets the FEI requirement at the peak condition:
 Fan likely to meet the FEI requirement at lower flow conditions.
- Ensure fan will avoid surge and overspeed at all operating points.

What is the right selection?

- All fans with FEI \geq 1.00 (CS) or 0.95 (VAV) are compliant
- Free to consider other decision criteria:
 - Form factor
 - Weight
 - Budget
 - Energy cost
 - Acoustics
 - Availability

<u>Resources</u>

- AMCA International: www.amca.org
- AMCA Certified FEI ratings: www.amca.org/certify
- AMCA Publications & Standards: www.amca.org/store (Available for purchase)
 - > ANSI/AMCA 208-18: Calculation of the Fan Energy Index
- AMCA microsite for FEI training, technical papers, PowerPoints, and regulatory status: www.amca.org/fei

Questions?

Contact Information

- Michael Ivanovich (mivanovich@amca.org)

- Tim Mathson (tmathson@amca.org)

Copies of today's presentation available for download at amca.org/Bahrain

Thank you for your participation!