ERRATA SHEET FOR

ANSI/AMCA STANDARD 210-16 (ANSI/ASHRAE STANDARD 51-2016) Laboratory Methods of Testing Fans for Certified Aerodynamic Performance rating

July 30, 2018
The corrections listed in this errata sheet apply to the all printings of ANSI/AMCA 210-2016 (ANSI/ASHRAE STANDARD 51-2016).

Page	Erratum
16	Change Eq. 7.18 SI to read: $\operatorname{Re}=\frac{\sqrt{2}}{\mu} C D_{6} Y \sqrt{\frac{\Delta P_{\rho_{X}}}{1-E \beta^{4}}}$
16	Change Eq. $7.18 \mathrm{I}-\mathrm{P}$ to read: $\operatorname{Re}=\frac{1097.8}{60 \mu} C D_{6} Y \sqrt{\frac{\Delta P_{\rho_{X}}}{1-E \beta^{4}}}$
18	Change Eq. 7.33 SI to read: $\quad \operatorname{Re}=\frac{D_{h} V \rho}{\mu}$
19	Change Eq. 7.33 I-P to read: $\quad \operatorname{Re}=\frac{D_{h} V \rho}{60 \mu}$
67	In section G.3, Step 1-1, first line, change equation to read: $\operatorname{Re}=\frac{1097.8}{60 \mu_{6}} C e D_{6} Y \sqrt{\frac{\Delta P_{\rho_{5}}}{1-E \beta^{4}}}$
67	In section G.3, after a constant was changed in a previous edition (1096 was changed to 1097.8), the example calculation that followed was not corrected. Section G.3, as shown below, includes corrected numbers indicated by a highlight.
67	In the last line of Section G.4, change to read, "The formula is based on $C=9.5, Y=$ 0.9.6, $E=1.0$, and $\mu_{6}=1.222 \times 10^{-5} \mathrm{lbm} / \mathrm{ft}-\mathrm{s}$.

G. 3 Example iteration

Iteration 1

Step 1-1 - Calculate Re, using:
$\operatorname{Re}=\frac{1097.8}{\mu_{6}} C e D_{6} Y \sqrt{\frac{\Delta P \rho_{5}}{1-E \beta^{4}}}$

Where:

μ_{6}	$=1.222 \times 10^{-5} \mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$
$C e$	$=0.99($ estimated $)$
D_{6}	$=6 \mathrm{in} .=0.5 \mathrm{ft}$
Y	$=0.998($ calculate per Section 7.3.1.3)
ΔP	$=1.005 \mathrm{in} . \mathrm{wg}$
ρ	$=0.0711 \mathrm{lbm} / \mathrm{ft}^{3}$
$\left(1-E \beta^{4}\right)$	$=1$ for iteration purposes

$\mathrm{Re}_{1}=\frac{1097.8}{(60)\left(1.222 \times 10^{-5}\right)}(0.99)(0.5)(0.998) \sqrt{(1.005)(0.0711)}$
$R \mathrm{e}_{1}=197,722$

Step 1-2
Calculate $C e_{1}$, using Re_{1} from the previous step, assuming that $L / D=0.6$:
$C e_{1}=0.9986-\frac{7.006}{\sqrt{\left(\mathrm{Re}_{1}\right)}}+\frac{134.6}{\mathrm{Re}_{1}}$
$C e_{1}=0.9986-\frac{7.006}{\sqrt{197,722}}+\frac{134.6}{197,722}$
$C e_{1}=0.9835$

Check: $\left|C e-C e_{1}\right|=|0.99-0.9835|=0.0065$
Since $0.0065>0.001$, a second iteration is required.

Iteration 2

Step 2-1 - Re-estimate Re , using Ce_{1} :
$\operatorname{Re}_{2}=\operatorname{Re}_{1}\left(\frac{C e_{1}}{C e}\right)$
$\mathrm{Re}_{2}=197,722\left(\frac{0.9835}{0.99}\right)$
$\operatorname{Re}_{2}=196,424$
Step 2-2 - Recalculate C, using Re_{2} :
$C e_{2}=0.9986-\frac{7.006}{\sqrt{\mathrm{Re}_{2}}}+\frac{134.6}{\mathrm{Re}_{2}}$
$C e_{2}=0.9986-\frac{7.006}{\sqrt{196,424}}+\frac{134.6}{196,424}$
$C e_{2}=0.9835$

Check: $\left|C e_{1}-C e_{2}\right|=|0.9831-0.9835|=0.0004$
Since $0.0004<0.001$, no further iterations are required, and $C e_{2}=0.9835=C$.

If, for some unusual conditions, the iterations do not converge, then try a different starting initial guess for Ce.

