ERRATA SHEET FOR

ANSI/AMCA STANDARD 210-16 (ANSI/ASHRAE STANDARD 51-2016) Laboratory Methods of Testing Fans for Certified Aerodynamic Performance rating

July 30, 2018

The corrections listed in this errata sheet apply to the all printings of ANSI/AMCA 210-2016 (ANSI/ASHRAE STANDARD 51-2016).

Page	Erratum
16	Change Eq. 7.18 SI to read: $Re = \frac{\sqrt{2}}{\mu} C D_6 Y \sqrt{\frac{\Delta P_{\rho_X}}{1 - E\beta^4}}$
16	Change Eq. 7.18 I-P to read: $Re = \frac{1097.8}{60\mu} CD_6 Y \sqrt{\frac{\Delta P_{\rho_X}}{1 - E\beta^4}}$
18	Change Eq. 7.33 SI to read: $Re = \frac{D_h V \rho}{\mu}$
19	Change Eq. 7.33 I-P to read: $Re = \frac{D_h V \rho}{60 \mu}$
67	In section G.3, Step 1-1, first line, change equation to read: $Re = \frac{1097.8}{60\mu_6} CeD_6 Y \sqrt{\frac{\Delta P_{\rho_5}}{1 - E\beta^4}}$
67	In section G.3, after a constant was changed in a previous edition (1096 was changed to 1097.8), the example calculation that followed was not corrected. Section G.3, as shown below, includes corrected numbers indicated by a highlight.
67	In the last line of Section G.4, change to read, "The formula is based on $C = 9.5$, $Y = 0.9.6$, $E = 1.0$, and $\mu_6 = 1.222 \text{ X} 10^{-5} \text{ lbm/ft-s.}$

G.3 Example iteration

Iteration 1

Step 1-1 — Calculate Re, using:

$$\operatorname{Re} = \frac{1097.8}{\mu_6} CeD_6 Y \sqrt{\frac{\Delta P \rho_5}{1 - E\beta^4}}$$

Where:

 $\begin{array}{lll} \mu_6 & = 1.222 \times 10^{-5} \mbox{ lbm/ft} \mbox{ s} \\ Ce & = 0.99 \mbox{ (estimated)} \\ D_6 & = 6 \mbox{ in.} = 0.5 \mbox{ ft} \\ Y & = 0.998 \mbox{ (calculate per Section 7.3.1.3)} \\ \Delta P & = 1.005 \mbox{ in. wg} \\ \rho & = 0.0711 \mbox{ lbm/ft}^3 \\ (1-E\beta^4) & = 1 \mbox{ for iteration purposes} \end{array}$

$$\operatorname{Re}_{1} = \frac{1097.8}{(60)(1.222 \times 10^{-5})}(0.99)(0.5)(0.998)\sqrt{(1.005)(0.0711)}$$

 $Re_1 = 197,722$

Step 1-2

Calculate Ce_1 , using Re₁ from the previous step, assuming that L/D = 0.6:

$$Ce_1 = 0.9986 - \frac{7.006}{\sqrt{(\text{Re}_1)}} + \frac{134.6}{\text{Re}_1}$$

$$Ce_1 = 0.9986 - \frac{7.006}{\sqrt{197,722}} + \frac{134.6}{197,722}$$

 $Ce_1 = 0.9835$

Check:
$$|Ce - Ce_1| = |0.99 - 0.9835| = 0.0065$$

Since 0.0065 > 0.001, a second iteration is required.

Iteration 2

Step 2-1 — Re-estimate Re, using Ce₁:

$$\operatorname{Re}_2 = \operatorname{Re}_1\left(\frac{Ce_1}{Ce}\right)$$

$\operatorname{Re}_2 = 197,722 \left(\frac{0.9835}{0.99}\right)$

 $\text{Re}_2 = 196,424$

Step 2-2 — Recalculate C, using Re₂:

$$Ce_2 = 0.9986 - \frac{7.006}{\sqrt{\text{Re}_2}} + \frac{134.6}{\text{Re}_2}$$

$$Ce_2 = 0.9986 - \frac{7.006}{\sqrt{196,424}} + \frac{134.6}{196,424}$$

 $Ce_2 = 0.9835$

Check: $|Ce_1 - Ce_2| = |0.9831 - 0.9835| = 0.0004$

Since 0.0004 < 0.001, no further iterations are required, and $Ce_2 = 0.9835 = C$.

If, for some unusual conditions, the iterations do not converge, then try a different starting initial guess for *Ce*.